【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若且,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)見解析;(3)
【解析】
(1)代入,再根據(jù)導(dǎo)數(shù)的幾何意義求解即可.
(2)易得,因?yàn)?/span>,故分與兩種情況分析導(dǎo)數(shù)的正負(fù),從而得出單調(diào)區(qū)間即可.
(3)根據(jù)(2)中的單調(diào)性,分與兩種情況討論的單調(diào)性,并求出最值,再根據(jù)的值域滿足的關(guān)系結(jié)合題意求解即可.
(1)若,則,故,,,
∴所求切線方程為;
(2)函數(shù)的定義域?yàn)?/span>,,
當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,
當(dāng)時(shí),令得,令得,故函數(shù)在單調(diào)遞減,在單調(diào)遞增;
(3)當(dāng)時(shí),函數(shù)在上單調(diào)遞減,
又,而,不合題意;
當(dāng)時(shí),由(2)可知,,
(i)當(dāng),即時(shí),,不合題意;
(ii)當(dāng),即時(shí),,滿足題意;
(iii)當(dāng),即時(shí),則,
∵,函數(shù)在單調(diào)遞增,
∴當(dāng)時(shí),,
又∵函數(shù)的定義域?yàn)?/span>,
∴,滿足題意.
綜上,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某外國(guó)語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.
女生 | 男生 | 總計(jì) | |
獲獎(jiǎng) | |||
不獲獎(jiǎng) | |||
總計(jì) | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個(gè)稅新政人民心”我國(guó)自1980年以來,力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來了全面實(shí)施的階段.2019年1月1日實(shí)施的個(gè)稅新政主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收人個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括住房、子女教育和贍養(yǎng)老人等.新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及其對(duì)應(yīng)的稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
繳稅基數(shù) | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn) | 稅率(%) | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除 | 稅率(%) |
1 | 不超過1500元的部分 | 3 | 不超過3000元的部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
… | … | … | … | … |
隨機(jī)抽取某市2020名同一收入層級(jí)的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計(jì)分析,預(yù)估他們2019年的人均月收入24000元,統(tǒng)計(jì)資料還表明,他們均符合住房專項(xiàng)扣除;同時(shí),他們每人至多只有一個(gè)符合子女教育扣除的孩子,并且他們中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是;此外,他們均不符合其他專項(xiàng)附加扣除,新個(gè)稅政策下該市的專項(xiàng)附加扣除標(biāo)準(zhǔn)為:住房1000元/月,子女教育每孩1000元/月,贍養(yǎng)老人2000元/月等.假設(shè)該市該收入層級(jí)的從業(yè)者都獨(dú)自享受專項(xiàng)附加扣除,將預(yù)估的該市該收入層級(jí)的從業(yè)者的人均月收入視為其個(gè)人月收入,根據(jù)樣本估計(jì)總體的思想,解決如下問題:
(1)求在舊政策下該收入層級(jí)的從業(yè)者每月應(yīng)納的個(gè)稅;
(2)設(shè)該市該收入層級(jí)的從業(yè)者2019年月繳個(gè)稅為X元,求X的分布列和期望;
(3)根據(jù)新舊個(gè)稅方案,估計(jì)從2019年1月開始,經(jīng)過多少個(gè)月,該市該收入層級(jí)的從業(yè)者各月少繳納的個(gè)稅之和就超過2019年的人均月收入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)S為正方形ABCD所在平面外一點(diǎn),△SBC是邊長(zhǎng)為2的等邊三角形,點(diǎn)E為線段SB的中點(diǎn).
(1)證明:SD//平面AEC;
(2)若側(cè)面SBC⊥底面ABCD,求平面ACE與平面SCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).
(1)若過點(diǎn),且,求的斜率;
(2)若,且的斜率為,當(dāng)時(shí),求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)為其左頂點(diǎn),點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與橢圓交于兩點(diǎn),當(dāng)垂直于軸時(shí),.
(1)求該橢圓的方程;
(2)設(shè)直線,分別交直線于點(diǎn),,線段的中點(diǎn)為,設(shè)直線與的斜率分別為,,且,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上,直線AP,BP分別與直線相交于點(diǎn)M,N.當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以M,N為直徑的圓是否經(jīng)過軸上的定點(diǎn)?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處的切線與直線平行,求實(shí)數(shù)的值;
(2)試討論函數(shù)在區(qū)間上的最大值;
(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com