【題目】設(shè)是定義在上的奇函數(shù),當(dāng)時(shí), .

1)求的解析式;

(2)解不等式.

【答案】(1) ;(2)(,-2)(0,2)

【解析】試題分析:(1)奇函數(shù)有f(0)0,再由x<0時(shí),f(x)=-f(x)即可求解;

2由(1)分段求解不等式,最后取并集即可.

試題解析:

1因?yàn)?/span>f(x)是定義在上的奇函數(shù),所以當(dāng)x=0時(shí),f(x)0,

當(dāng)x<0時(shí),f(x)=-f(x),-x>0,又因?yàn)楫?dāng)x>0時(shí),f(x),.

所以當(dāng)x<0時(shí),f(x)=-f(x)=-..

綜上所述:此函數(shù)的解析式.

2f(x)<,當(dāng)x=0時(shí),f(x)<不成立;

當(dāng)x>0時(shí),即<,所以<,所以>,所以3x1<8,解得x<2,

當(dāng)x<0時(shí),即<,所以>,所以3x>32,所以x<2

綜上所述解集是(,-2)∪(0,2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有同一型號(hào)的電腦96臺(tái),為了了解這種電腦每開機(jī)一次所產(chǎn)生的輻射情況,從中抽取10臺(tái)在同一條件下做開機(jī)實(shí)驗(yàn),測量開機(jī)一次所產(chǎn)生的輻射,得到如下數(shù)據(jù):

13.7 12.9 14.4 13.8 13.3

12.7 13.5 13.6 13.1 13.4

(1)寫出采用簡單隨機(jī)抽樣抽取上述樣本的過程;

(2)根據(jù)樣本,請(qǐng)估計(jì)總體平均數(shù)與總體標(biāo)準(zhǔn)差的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四邊形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0)、A(6,2)、B(4,6)、C(2,6),直線ykx(<k<3)分四邊形OABC為兩部分,S表示靠近x軸一側(cè)的那一部分的面積.

(1)求Sf(k)的函數(shù)表達(dá)式;

(2)當(dāng)k為何值時(shí),直線ykx將四邊形OABC分為面積相等的兩部分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C交于A,B兩點(diǎn),試求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(3x+φ)的圖象向右平移動(dòng) 個(gè)單位,得到的圖象關(guān)于y軸對(duì)稱,則|φ|的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大小;
(2)若c= ≤a,求2a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn), 和直線相切.

1)求圓的方程;

(2)若直線經(jīng)過點(diǎn),并且被圓截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×
(1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:﹣ ≤Tn<﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線3x+y﹣1=0上,且圓C在x軸、y軸上截得的弦長AB和MN分別為
(1)求圓C的方程;
(2)若圓心C位于第四象限,點(diǎn)P(x,y)是圓C內(nèi)一動(dòng)點(diǎn),且x,y滿足 ,求 的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案