【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足an2﹣2Sn=2﹣an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:由 ,

兩式相減得

,即(an+1﹣an)(an+1+an)﹣(an+1+an)=0

因?yàn)閍n>0,解得an+1﹣an=1(n∈N*

故數(shù)列{an}為等差數(shù)列,且公差d=1

,解得a1=2或a1=﹣1(舍去)

故an=n+1


(2)解:

=


【解析】(1)由 ,得 ,兩式相減得 ,即 ,即an+1﹣an=1(n∈N*)即可求數(shù)列{an}的通項(xiàng)公式; 累加即可求數(shù)列{bn}的前n項(xiàng)和Tn
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且過點(diǎn).

(1)求橢圓的方程;

(2)若不經(jīng)過點(diǎn)的直線交于兩點(diǎn),且直線與直線的斜率之和為,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:Sn=1﹣an(n∈N*),其中Sn為數(shù)列{an}的前n項(xiàng)和. (Ⅰ)試求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足: (n∈N*),試求{bn}的前n項(xiàng)和公式Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(3x+φ)的圖象向右平移動(dòng) 個(gè)單位,得到的圖象關(guān)于y軸對(duì)稱,則|φ|的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=lnx﹣x﹣mx在區(qū)間[1,e2]內(nèi)有唯一的零點(diǎn),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn), 和直線相切.

1)求圓的方程;

(2)若直線經(jīng)過點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中點(diǎn).
(1)求證:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,若sin A=2sin Bcos C,sin2A=sin2B+sin2C,試判斷ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣t)|x|(t∈R).
(1)當(dāng)t=2時(shí),求函數(shù)f(x)的單調(diào)性;
(2)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若t∈(0,2),對(duì)于x∈[﹣1,2],不等式f(x)>x+a都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案