【題目】已知函數(shù)f(x)=loga(x+1),函數(shù)g(x)=loga(4﹣2x)(a>0,且a≠1).
(1)求函數(shù)y=f(x)﹣g(x)的定義域;
(2)求使函數(shù)y=f(x)﹣g(x)的值為正數(shù)的x的取值范圍.

【答案】
(1)解:由題意可知,函數(shù)f(x)=loga(x+1),函數(shù)g(x)=loga(4﹣2x)(a>0,且a≠1).

那么:函數(shù)y=f(x)﹣g(x)=loga(x+1)﹣loga(4﹣2x)

定義域滿足: ,

解得:﹣1<x<2.

∴函數(shù)y=f(x)﹣g(x)的定義域是(﹣1,2)


(2)解:函數(shù)y=f(x)﹣g(x)的值為正數(shù),即f(x)>g(x)

可得:loga(x+1)>loga(4﹣2x)

當(dāng)a>1時(shí),可得:x+1>4﹣2x,

解得:x>1.

又∵定義域:﹣1<x<2.

∴解集為(1,2)

當(dāng)0<a<1時(shí),可得:x+1<4﹣2x,

解得:x<1.

又∵定義域:﹣1<x<2.

∴解集為(﹣1,1)

綜上所述:當(dāng)a>1時(shí),x的取值范圍是(1,2);

當(dāng)0<a<1時(shí),x的取值范圍是(﹣1,1)


【解析】(1)根據(jù)對(duì)數(shù)的真數(shù)要大于0,寫出滿足函數(shù)有意義的不等式組求解即可.(2)將等式轉(zhuǎn)化為不等式問題求解.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的定義域及其求法和函數(shù)的值域,掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為 , 是橢圓的長(zhǎng)軸的兩個(gè)端點(diǎn)(位于右側(cè)),是橢圓在軸正半軸上的頂點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在經(jīng)過點(diǎn)且斜率為的直線與橢圓交于不同兩點(diǎn),使得向量共線?如果存在,求出直線方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:函數(shù)y=log2(x2﹣2x)的單調(diào)增區(qū)間是[1,+∞),命題q:函數(shù)y=的值域?yàn)椋?,1),下列命題是真命題的為(  )
A.p∧q
B.p∨q
C.p∧(¬q)
D.¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+e﹣x , 其中e是自然對(duì)數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},從M到N有四種對(duì)應(yīng)如圖所示:

其中能表示為M到N的映射關(guān)系的有(請(qǐng)?zhí)顚懛蠗l件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2)過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在直線的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),.

(Ⅰ)當(dāng)時(shí),求曲線處的切線的方程;

(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);

(Ⅲ)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期為π
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f( )= ,f( )= ,且α、β∈(﹣ ),求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案