【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),離心率為, , 是橢圓的長(zhǎng)軸的兩個(gè)端點(diǎn)(位于右側(cè)),是橢圓在軸正半軸上的頂點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓交于不同兩點(diǎn),使得向量共線?如果存在,求出直線方程;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(2)不存在

【解析】試題分析:(1)依題意得解得, .

所以橢圓的方程為.(2)假設(shè)存在過(guò)點(diǎn)且斜率為的直線適合題意,則因?yàn)橹本的方程為: ,于是聯(lián)立方程, .由直線與橢圓交于不同兩點(diǎn)知,

, .令, , ,由韋達(dá)定理得出結(jié)論, ,根據(jù)向量共線,可得, ,這與矛盾.

試題解析:

(1)設(shè)橢圓的方程為

.依題意得解得, .

所以橢圓的方程為.

(2)假設(shè)存在過(guò)點(diǎn)且斜率為的直線適合題意,則因?yàn)橹本的方程為: ,于是聯(lián)立方程, .

由直線與橢圓交于不同兩點(diǎn)知,

, .

, ,

, ,

,

由題知 , .

從而,根據(jù)向量共線,可得, ,這與矛盾.

故不存在符合題意的直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知離心率為的橢圓經(jīng)過(guò)點(diǎn),且是頂點(diǎn)均不與橢圓四個(gè)頂點(diǎn)重合的橢圓一個(gè)內(nèi)接四邊形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,試判斷的面積是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,上一點(diǎn),、為橢圓的兩焦點(diǎn),的周長(zhǎng)為

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)橢圓,曲線的切線交橢圓、兩點(diǎn),試證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D,E分別是邊AB,AC上的一點(diǎn),且滿(mǎn)足AD= AB,AE= AC,若BE⊥CD,則cosA的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且
(1)求角B的大。
(2)若a+c=8,求AC邊上中線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是正數(shù)組成的數(shù)列, ,且點(diǎn) 在函數(shù)的圖象上.

(1)求數(shù)列的通項(xiàng)公式;

(2)若列數(shù)滿(mǎn)足,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)y=3cos(2x﹣ )的圖象,可以將函數(shù)y=3sin2x的圖象( )
A.沿x軸向左平移 單位
B.沿x軸向右平移 單位
C.沿x軸向左平移 單位
D.沿x軸向右平移 單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一塊直角三角形木板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角形木板內(nèi)一點(diǎn),現(xiàn)因三角形木板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)的任一直線將三角形木板鋸成.設(shè)直線的斜率為.

(Ⅰ)求點(diǎn)的坐標(biāo)及直線的斜率的范圍;

(Ⅱ)令的面積為,試求出的取值范圍;

(Ⅲ)令(Ⅱ)中的取值范圍為集合,若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案