【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)).證明:

1存在唯一的極值點(diǎn);

2有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為相反數(shù).

【答案】(1)證明見解析(2)證明見解析

【解析】

1)要證明存在唯一的極值點(diǎn),通常情況下,即證明有唯一解,且在此解左右兩邊的單調(diào)性不一致即可;

2)首先借助第(1)問的結(jié)論與零點(diǎn)存在定理證明在只有一個(gè)零點(diǎn),在只有一個(gè)零點(diǎn),然后令去證明,即可得到的兩根互為相反數(shù).

證明:1的定義域?yàn)?/span>

當(dāng)時(shí),;

當(dāng)時(shí),,上是增函數(shù),

,

所以存在,使得

并且當(dāng)時(shí),當(dāng)時(shí),

所以當(dāng)時(shí),是減函數(shù),

當(dāng)時(shí),是增函數(shù),

唯一的極值點(diǎn),且是極小值點(diǎn)。

2)由(1)得: 上是減函數(shù),其中,

所以只有一個(gè)零點(diǎn),且這個(gè)零點(diǎn)在區(qū)間上,

上是增函數(shù),

,

所以只有一個(gè)零點(diǎn),且這個(gè)零點(diǎn)在區(qū)間上,

所以僅有兩個(gè)零點(diǎn),分別記作

由于

所以,即,故.

也是的零點(diǎn),

所以,的兩根互為相反數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.01,0.05.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為16萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有ab兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.02.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.

1)若選擇生產(chǎn)線②,求生產(chǎn)成本恰好為20萬元的概率;

2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)被隔離者是否需要社區(qū)非醫(yī)護(hù)人員提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位被隔離者,結(jié)果如下:

性別

是否需要

需要

40

30

不需要

160

270

0.050

0.010

0.001

3.841

6.635

10.828

1)估計(jì)該地區(qū)被隔離者中,需要社區(qū)非醫(yī)護(hù)人員提供幫助的被隔離者的比例;

2)能否有99%的把握認(rèn)為該地區(qū)的被隔離者是否需要社區(qū)非醫(yī)護(hù)人員提供幫助與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)對(duì)、,同時(shí)滿足:(1)當(dāng)時(shí)有;(2)當(dāng)時(shí)有,則稱函數(shù).下列函數(shù)中:①;②;③;④.函數(shù)的為(

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(

A.若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1

B.設(shè)有一個(gè)回歸方程,變量增加一個(gè)單位時(shí),平均增加5個(gè)單位

C.把某中學(xué)的高三年級(jí)560名學(xué)生編號(hào):1560,再?gòu)木幪?hào)為11010名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為,,的學(xué)生,這樣的抽樣方法是分層抽樣

D.若一組數(shù)據(jù)0,,34的平均數(shù)是2,則該組數(shù)據(jù)的方差是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意,任意,不等式恒成立時(shí)最大的記為,當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美,寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線C上存在到原點(diǎn)的距離超過的點(diǎn);

③曲線C所圍成的心形區(qū)域的面積小于3.其中所有正確結(jié)論的個(gè)數(shù)是( .

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為常數(shù),函數(shù)有兩個(gè)極值點(diǎn)x1,x2,且x1x2,則有( 。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

1)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

2)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);

編號(hào)

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,

,,

參考公式:,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

同步練習(xí)冊(cè)答案