【題目】已知a為常數(shù),函數(shù)有兩個(gè)極值點(diǎn)x1,x2,且x1x2,則有(  )

A.B.

C.D.

【答案】A

【解析】

求導(dǎo)fx)=xaex,將問題轉(zhuǎn)化為有兩根為x1x2,設(shè),利用導(dǎo)數(shù)法研究其圖象利用數(shù)形結(jié)合法求解.

依題意:fx)=xaex,則fx)=0的兩根為x1x2,即的兩根為x1,x2

設(shè),則,令gx)=0,解得x1,

gx)在(﹣1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,函數(shù)gx)的圖象如下,

由圖可知,0x11,x21,

當(dāng)x∈(﹣,x1)∪(x2+∞)時(shí),,則fx)<0,fx)單調(diào)遞減,

當(dāng)x∈(x1,x2)時(shí),,則fx)>0,fx)單調(diào)遞增,

fx極小值,又x1∈(0,1),

,

fx極大值,又x2∈(1+∞),

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)數(shù).

(1)求的最值;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).證明:

1存在唯一的極值點(diǎn);

2有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若直線l交曲線CA,B兩點(diǎn),交x軸于點(diǎn)P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).

1)求拋物線的方程;

2)設(shè),為拋物線上的不同三點(diǎn),點(diǎn),且.求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)若點(diǎn)是曲線上的動(dòng)點(diǎn),求到直線距離的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國,大學(xué)生就業(yè)壓力日益嚴(yán)峻,伴隨著政府政策引導(dǎo)與社會(huì)觀念的轉(zhuǎn)變,大學(xué)生創(chuàng)業(yè)意識(shí),就業(yè)方向也悄然發(fā)生轉(zhuǎn)變某大學(xué)生在國家提供的稅收,擔(dān)保貸款等很多方面的政策扶持下選擇加盟某專營店自主

創(chuàng)業(yè),該專營店統(tǒng)計(jì)了近五年來創(chuàng)收利潤數(shù)(單位:萬元)與時(shí)間(單位:年)的數(shù)據(jù),列表如下:

1

2

3

4

5

2.4

2.7

4.1

6.4

7.9

(Ⅰ)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合):

(Ⅱ)該專營店為吸引顧客,特推出兩種促銷方案.

方案一:每滿500元可減50元;

方案二:每滿500元可抽獎(jiǎng)一次,每次中獎(jiǎng)的概率都為,中獎(jiǎng)就可以獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客每次抽獎(jiǎng)的結(jié)果相互獨(dú)立.

①某位顧客購買了1050元的產(chǎn)品,該顧客選擇參加兩次抽獎(jiǎng),求該顧客獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率.

②某位顧客購買了1500元的產(chǎn)品,作為專營店老板,是希望該顧客直接選擇返回150元現(xiàn)金,還是選擇參加三次抽獎(jiǎng)?說明理由

附:相關(guān)系數(shù)公式

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年下半年以來,各地區(qū)陸續(xù)出臺(tái)了“垃圾分類”的相關(guān)管理?xiàng)l例,實(shí)行“垃圾分類”能最大限度地減少垃圾處置量,實(shí)現(xiàn)垃圾資源利用,改善生存環(huán)境質(zhì)量.某部門在某小區(qū)年齡處于區(qū)間內(nèi)的人中隨機(jī)抽取人進(jìn)行了“垃圾分類”相關(guān)知識(shí)掌握和實(shí)施情況的調(diào)查,并把達(dá)到“垃圾分類”標(biāo)準(zhǔn)的人稱為“環(huán)保族”,得到圖各年齡段人數(shù)的頻率分布直方圖和表中統(tǒng)計(jì)數(shù)據(jù).

1)求的值;

2)根據(jù)頻率分布直方圖,估計(jì)這人年齡的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,結(jié)果保留整數(shù));

3)從年齡段在的“環(huán)保族”中采用分層抽樣的方法抽取9人進(jìn)行專訪,并在這9人中選取2人作為記錄員,求選取的2名記錄員中至少有一人年齡在區(qū)間中的概率.

組數(shù)

分組

“環(huán)保族”人數(shù)

占本組頻率

第一組

45

0.75

第二組

25

第三組

0.5

第四組

3

0.2

第五組

3

0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖數(shù)據(jù)如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹苗的中位數(shù)大于乙種樹苗的中位數(shù),且甲種樹苗比乙種樹苗長得整齊

B.甲種樹苗的中位數(shù)大于乙種樹苗的中位數(shù),但乙種樹苗比甲種樹苗長得整齊

C.乙種樹苗的中位數(shù)大于甲種樹苗的中位數(shù),且乙種樹苗比甲種樹苗長得整齊

D.乙種樹苗的中位數(shù)大于甲種樹苗的中位數(shù),但甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

同步練習(xí)冊答案