一盒中裝有大小質(zhì)地相同的小球,其中紅球4個(gè),白球、黑球各3個(gè),
(Ⅰ)從中任取兩球,求取得的兩球顏色不同的概率;
(Ⅱ)將紅球標(biāo)上0,1,2,3;白球、黑球分別標(biāo)上0,1,2;現(xiàn)從盒中任意取出兩個(gè)小球.記所取出的兩球標(biāo)號(hào)之積為ξ,求ξ的分布列與數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)求出從盒中摸出小球的所有方法總數(shù),求出顏色相同的方法數(shù),即可利用古典概型求出對(duì)立事件的概率,即可.
(Ⅱ)ξ的取值為:0,1,2,3,4,6;分別求出概率,得到分布列,然后求解數(shù)學(xué)期望.
解答: (本小題滿分14分)
解:(Ⅰ)從盒中摸出小球的所有方法總數(shù)有
C
2
10
=45
種,
其中顏色相同的方法數(shù)有
C
2
4
+
C
2
3
+
C
2
3
=12
種,
所以取得的兩球顏色不同的概率P=1-
12
45
=
11
15
…(5分)
(Ⅱ)ξ的取值為:0,1,2,3,4,6…(6分)
P(ξ=0)=
C
2
3
+
C
1
3
C
1
7
C
2
10
=
8
15

P(ξ=1)=
C
2
3
C
2
10
=
1
15
;
P(ξ=2)=
C
1
3
C
1
3
C
2
10
=
3
15

P(ξ=3)=
C
1
3
C
2
10
=
1
15
;
P(ξ=4)=
C
2
3
C
2
10
=
1
15
;
P(ξ=6)=
C
1
3
C
2
10
=
1
15
;  …(10分)
則ξ的分布列為
ξ 0 1 2 3 4 6
P
8
15
1
15
1
5
1
15
1
15
1
15
Eξ=
1+6+3+4+6
15
=
4
3
…(14分)
點(diǎn)評(píng):本題考查對(duì)立事件的概率的求法,古典概型的應(yīng)用,分布列以及數(shù)學(xué)期望的求法,考查分析問題解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線ax+y+1=0經(jīng)過(guò)拋物線y2=4x的焦點(diǎn),則該直線的傾斜角為(  )
A、0
B、
π
4
C、
π
2
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•3n-1}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐P-ABCD的三視圖如圖所示,四棱錐P-ABCD的五個(gè)頂點(diǎn)都在一個(gè)球面上,E、F分別是棱AB、CD的中點(diǎn),直線EF被球面所截得的線段長(zhǎng)為2
2
,則該球表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn,滿足6Sn=
a
2
n
+3an+2,又a1,a2,a6是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=a1bn+a2bn-1+…+anb1,n∈N+,證明3Tn+1=2bn+1-an+1(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠某種產(chǎn)品的年產(chǎn)量為1000x件,其中x∈[20,100],需要投入的成本為C(x),當(dāng)x∈[20,80]時(shí),C(x)=
1
2
x2-30x+500(萬(wàn)元);當(dāng)x∈(80,100]時(shí),C(x)=
20000
x
(萬(wàn)元).若每一件商品售價(jià)為
lnx
x
(萬(wàn)元),通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于x的函數(shù)解析式;
(2)年產(chǎn)量為多少件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an},{bn}滿足a1=b1=6,a2=b2=4,a3=b3,{an-2}是等比數(shù)列,且數(shù)列{bn+1-bn}是等差數(shù)列,其中n∈N*
(1)求a3的值;
(2)求數(shù)列{an}和{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O.將菱形沿對(duì)角線AC折起,使得平面ABC⊥平面ADC,得到三棱錐B-ACD,M是棱BC上的一點(diǎn).

(Ⅰ)若OM⊥BC,求證:BC⊥平面OMD;
(Ⅱ)若OM∥平面ABD,求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)范圍內(nèi),不等式||x-2|-1|≤1的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案