【題目】已知拋物線上的兩個(gè)動(dòng)點(diǎn), 的橫坐標(biāo),線段的中點(diǎn)坐標(biāo)為,直線與線段的垂直平分線相交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求的面積的最大值.
【答案】(Ⅰ)(Ⅱ).
【解析】試題分析:(1)根據(jù)題設(shè)條件可求出線段的斜率,進(jìn)而求出線段的垂直平分線方程,聯(lián)立直線與線段的垂直平分線方程,即可求出點(diǎn)的坐標(biāo);(2)聯(lián)立直線與拋物線的方程,結(jié)合韋達(dá)定理及弦長(zhǎng)公式求出線段的長(zhǎng),再求出點(diǎn)到直線的距離,即可求出的表達(dá)式,再構(gòu)造新函數(shù),即可求出最大值.
試題解析:(1)∵,有,又點(diǎn)M不在拋物線C上,有,而, ,
∴線段的斜率為 ,
∴線段的垂直平分線方程為,即,
由得,
即,得, ,
∴點(diǎn)的坐標(biāo).
(2)直線的方程為,
由得,
∵,∴,結(jié)合(1)得,
又, ,
∴ ,
又點(diǎn)到直線的距離,
∴ ,
設(shè), ,
則 ,
令得 (舍去), ,
由于時(shí), , 單調(diào)遞增,
時(shí), , 單調(diào)遞減,
∴當(dāng)時(shí), 取得最大值,即的面積取得最大值,
故的面積的最大值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來我國(guó)電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,2017年雙11全天交易額達(dá)到1682億元,為規(guī)范和評(píng)估該行業(yè)的情況,相關(guān)管理部門制定出針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行評(píng)價(jià),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)完成關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全為好評(píng)的次數(shù)為隨機(jī)變量:
①求對(duì)商品和服務(wù)全為好評(píng)的次數(shù)的分布列;
②求的數(shù)學(xué)期望和方差.
附:臨界值表:
的觀測(cè)值: (其中)
關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·黃岡質(zhì)檢)設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn.若對(duì)任意的n∈N*,有S2n<3Sn,則q的取值范圍是( )
A. (0,1] B. (0,2)
C. [1,2) D. (0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, , 是線段的中點(diǎn),且 平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求證: 平面;
(Ⅲ)若, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)
(1)若,討論函數(shù)的單調(diào)性;
(2)若,求證:函數(shù)有唯一的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形和的面積分別為.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
(1)能否由的把握認(rèn)為參加書法社團(tuán)和參加演講社團(tuán)有關(guān)?
(附:
當(dāng)時(shí),有的把握說事件與有關(guān);當(dāng),認(rèn)為事件與是無(wú)關(guān)的)
(2)已知既參加書法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有名男同學(xué), , , , , 名女同學(xué), , .現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,求被選中且未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中, 平面,底面為梯形, , , ,點(diǎn), 分別為, 的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn),使與平面所成角的正弦值是,若存在,求的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上
()求的方程.
()設(shè)直線不經(jīng)過點(diǎn)且與相交于、兩點(diǎn),若直線與直線的斜率的和為,
證明: 過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com