隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.

(1)計(jì)算甲班的樣本方差;
(2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

(1);(2).

解析試題分析:(1)由平均數(shù)的計(jì)算公式先計(jì)算10名同學(xué)的平均身高,再由方差的計(jì)算公式可得甲班的樣本方差s2[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2;(2)由莖葉圖可知抽取兩名身高身高不低于173cm的同學(xué)有10種抽法,其中身高為176cm的同學(xué)被抽中的事件有4個(gè),因此所求概率.
試題解析:(1)=170.
甲班的樣本方差s2[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.
(2)設(shè)“身高為176cm的同學(xué)被抽中”為事件A.
從乙班10名同學(xué)中抽取兩名身高不低于173cm的同學(xué)有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10個(gè)基本事件,而事件A含有4個(gè)基本事件:(181,176),(179,176),(178,176),(176,173).所以P(A)=.
考點(diǎn):1、莖葉圖;2、樣本平均數(shù),樣本的方差;3、古典概型的概率計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(m/s)的數(shù)據(jù)如下表.


27
38
30
37
35
31

33
29
38
34
28
36
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息?
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、中位數(shù)、方差,并判斷選誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)空氣質(zhì)量指數(shù)(為整數(shù))的不同,可將空氣質(zhì)量分級(jí)如下表:

(數(shù)值)
 

 

 

 

 

 

 
空氣質(zhì)量級(jí)別
 
一級(jí)
 
二級(jí)
 
三級(jí)
 
四級(jí)
 
五級(jí)
 
六級(jí)
 
空氣質(zhì)量類別
 
優(yōu)
 

 
輕度污染
 
中度污染
 
重度污染
 
嚴(yán)重污染
 
空氣質(zhì)量類別顏色
 
綠色
 
黃色
 
橙色
 
紅色
 
紫色
 
褐紅色
 
某市日—日,對(duì)空氣質(zhì)量指數(shù)進(jìn)行監(jiān)測(cè),獲得數(shù)據(jù)后得到如圖的條形圖

(1)估計(jì)該城市本月(按天計(jì))空氣質(zhì)量類別為中度污染的概率;
(2)在空氣質(zhì)量類別顏色為紫色和褐紅色的數(shù)據(jù)中任取個(gè),求至少有一個(gè)數(shù)據(jù)反映的空氣質(zhì)量類別顏色為褐紅色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某英語學(xué)習(xí)小組共12名同學(xué)進(jìn)行英語聽力測(cè)試,隨機(jī)抽取6名同學(xué)的測(cè)試成績(jī)(單位:分),用莖葉圖記錄如下,其中莖為十位數(shù),葉為個(gè)位數(shù).

(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)成績(jī)高于樣本均值的同學(xué)為優(yōu)秀,根據(jù)莖葉圖估計(jì)該小組12名同學(xué)中有幾名優(yōu)秀同學(xué);
(3)從該小組12名同學(xué)中任取2人,求僅有1人是來自隨機(jī)抽取6人中優(yōu)秀同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)為了解某校今年高一年級(jí)女生的身體素質(zhì)狀況,從該校高一年級(jí)女生中抽取了一部分學(xué)生進(jìn)行“擲鉛球”的項(xiàng)目測(cè)試,成績(jī)低于5米為不合格,成績(jī)?cè)?至7米(含5米不含7米)的為及格,成績(jī)?cè)?米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績(jī)?cè)?米到11米之間.

(1)求實(shí)數(shù)的值及參加“擲鉛球”項(xiàng)目測(cè)試的人數(shù);
(2)若從此次測(cè)試成績(jī)最好和最差的兩組中隨機(jī)抽取2名學(xué)生再進(jìn)行其它項(xiàng)目的測(cè)試,求所抽取的2名學(xué)生自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為預(yù)防H7N9病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒有通過),公司選定2000個(gè)流感樣本分成三組,測(cè)試結(jié)果如下表:

分組
A組
B組
C組
疫苗有效
673
a
b
疫苗無效
77
90
c
已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33.
(I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,問應(yīng)在C組抽取樣本多少個(gè)?
(II)已知b≥465,c ≥30,求通過測(cè)試的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個(gè)班進(jìn)行鉛球測(cè)試,成績(jī)?cè)?.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.

(Ⅰ)求這次鉛球測(cè)試成績(jī)合格的人數(shù);
(Ⅱ)用此次測(cè)試結(jié)果估計(jì)全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機(jī)抽取兩名,記表示兩人中成績(jī)不合格的人數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測(cè)試后,甲成績(jī)?cè)?~10米之間,乙成績(jī)?cè)?.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠(yuǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

改革開放以來,我國高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村2001到2005年五年間每年考入大學(xué)的人數(shù),為了方便計(jì)算,2001年編號(hào)為1,2002年編號(hào)為2,……,2005年編號(hào)為5,數(shù)據(jù)如下:

年份(x)
 
1
 
2
 
3
 
4
 
5
 
人數(shù)(y)
 
3
 
5
 
8
 
11
 
13
 
(1)從這5年中隨機(jī)抽取兩年,求考入大學(xué)的人數(shù)至少有年多于10人的概率.
(2)根據(jù)這年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計(jì)算第年的估計(jì)值。
參考:用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

南昌市為增強(qiáng)市民的交通安全意識(shí),面向全市征召“小紅帽”志愿者在部分交通路口協(xié)助交警維持交通,把符合條件的1000名志愿者按年齡分組:第1組、第2組、第3組、第4組、第5組,得到的頻率分布直方圖如圖所示:

(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者在五一節(jié)這天到廣場(chǎng)協(xié)助交警維持交通,應(yīng)從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,南昌市決定在這12名志愿者中隨機(jī)抽取3名志愿者到學(xué)校宣講交通安全知識(shí),若表示抽出的3名志愿者中第3組的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案