為預防H7N9病毒爆發(fā),某生物技術公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個流感樣本分成三組,測試結果如下表:

分組
A組
B組
C組
疫苗有效
673
a
b
疫苗無效
77
90
c
已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結果,問應在C組抽取樣本多少個?
(II)已知b≥465,c ≥30,求通過測試的概率

(I)90;(II).

解析試題分析:(I)由古典概型的概率公式,可得,求,從而可求C組樣本個數(shù),然后根據(jù)分層抽樣抽樣比為,故可確定在C組抽取樣本個數(shù)為;(II)由(I)知,結合已知條件,可確定滿足條件的的取值有6種,測試沒有通過相當于疫苗無效的概率大于,從而求出的范圍,進而可求出沒有通過測試的基本事件數(shù),利用對立事件的概率公式求解.
試題解析:(I)∵,∴a=660,∵b+c=2000﹣673﹣77﹣660﹣90=500,∴應在C組抽取樣個數(shù)是(個);
(II)∵b+c=500,b≥465,c≥30,∴(b,c)的可能是:(465,35),(466,34),(467,33),(468,32),(469,31),(470,30),若測試沒有通過,則77+90+c>2000×(1﹣90%)=200,c>33,
(b,c)的可能性是(465,35),(466,34),通過測試的概率是
考點:1、分層抽樣;2、古典概型求概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某中學舉行了一次“環(huán)保知識競賽”活動,為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計,按照,,的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù))
     
(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取3名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設表示所抽取的3名同學中得分在的學生個數(shù),求的分布列及其數(shù)學期望 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

佛山某中學高三(1)班排球隊和籃球隊各有名同學,現(xiàn)測得排球隊人的身高(單位:)分別是:、、、、、、、,籃球隊人的身高(單位:)分別是:、、、、、、.

(Ⅰ)請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較小(無需計算);
(Ⅱ)現(xiàn)從兩隊所有身高超過的同學中隨機抽取三名同學,則恰好兩人來自排球隊一人來自籃球隊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)鄭州市為了緩解交通壓力,大力發(fā)展公共交通,提倡多坐公交少開車.為了調查市民乘公交車的候車情況,交通主管部門從在某站臺等車的45名候車乘客中隨機抽取15人,按照他們的候車時間(單位:分鐘)作為樣本分成6組,如下表所示:

(1)估計這45名乘客中候車時間少于12分鐘的人數(shù);
(2)若從上表第四、五組的5人中隨機抽取2人做進一步的問卷調查,求抽到的2人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.

(1)計算甲班的樣本方差;
(2)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm)

(1)根據(jù)頻率分布直方圖,求出這20名學生身高中位數(shù)的估計值和平均數(shù)的估計值.
(2)在身高為140—160的學生中任選2個,求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中華人民共和國《道路交通安全法》中將飲酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量(簡稱血酒含量,單位是毫克/毫升),當時,為“酒后駕車”;當時,為“醉酒駕車”.某市公安局交通管理部門于月的某天晚上點至點在該市區(qū)解放路某處設點進行一次攔查行動,共依法查出了名飲酒后違法駕駛機動車者,如圖為這名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中的人數(shù)計入人數(shù)之內).

(Ⅰ)求此次攔查中“醉酒駕車”的人數(shù);
(Ⅱ)從違法駕車的人中按“酒后駕車”和“醉酒駕車”利用分層抽樣抽取人做樣本進行研究,再從抽取的人中任取人,求人中其中人為“酒后駕車”另人為“醉酒駕車”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某學校100名學生期中考試語文成績的頻率分布直方圖如下右圖所示,其中成績分組區(qū)間是:,,,,。
求圖中a的值;
根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

若這100名學生語文成績某些分數(shù)段的人數(shù)與數(shù)學成績相應分數(shù)段的人數(shù)
之比如下表所示,求數(shù)學成績在之外的人數(shù)。

分數(shù)段




x:y
1:1
2:1
3:4
4:5
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了調查某大學學生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:
表1:男生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)





人數(shù)
5
25
30
25
15
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘)





人數(shù)
10
20
40
20
10
(Ⅰ)若該大學共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(Ⅱ)完成表3的列聯(lián)表,并回答能否有90%的把握認為“學生周日上網(wǎng)時間與性別有關”?
(Ⅲ)從表3的男生中“上網(wǎng)時間少于60分鐘”和“上網(wǎng)時間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過60分鐘的概率.
表3 :
 
上網(wǎng)時間少于60分鐘
上網(wǎng)時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

同步練習冊答案