【題目】在我市舉行“四川省運動會”期間,組委會將甲、乙、丙、丁四位志愿者全部分配到三個運動場館執(zhí)勤.若每個場館至少分配一人,則不同分配方案的種數(shù)是( )
A. 24B. 36C. 72D. 96
科目:高中數(shù)學 來源: 題型:
【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.為了解某市盲擰魔方愛好者的水平狀況,某興趣小組在全市范圍內隨機抽取了名魔方愛好者進行調查,得到的情況如表所示:
用時(秒) | ||||
男性人數(shù) | 15 | 22 | 14 | 9 |
女性人數(shù) | 5 | 11 | 17 | 7 |
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)將用時低于秒的稱為“熟練盲擰者”,不低于秒的稱為“非熟練盲擰者”.請根據(jù)調查數(shù)據(jù)完成以下列聯(lián)表,并判斷是否有的把握認為是否為“熟練盲擰者”與性別有關?
熟練盲擰者 | 非熟練盲擰者 | |
男性 | ||
女性 |
(2)以這名盲擰魔方愛好者的用時不超過秒的頻率,代替全市所有盲擰魔方愛好者的用時不超過秒的概率,每位盲擰魔方愛好者用時是否超過秒相互獨立.那么在該興趣小組在全市范圍內再次隨機抽取名愛好者進行測試,其中用時不超過秒的人數(shù)最有可能(即概率最大)是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學利用劉徽的“割圓術”思想在半徑為1的圓內作正邊形求其面積,如圖是其設計的一個程序框圖,則框圖中應填入、輸出的值分別為( )
(參考數(shù)據(jù):)
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就.在“楊輝三角”中,若去除所有為1的項,依次構成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前56項和為( )
A.2060B.2038C.4084D.4108
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為拋物線的焦點,,是橢圓上的兩個動點,且線段長度的最大值為4.
(1)求橢圓的標準方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系的極坐標方程為,直線l的參數(shù)方程為,(其中為參數(shù))直線l與交于A,B兩個不同的點.
求傾斜角的取值范圍;
求線段AB中點P的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com