【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

不愿生

總計

附表:

算得,參照附表,得到的正確結(jié)論是( )

A. 在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別有關(guān)”

B. 以上的把握認為“生育意愿與城市級別有關(guān)”

C. 在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別無關(guān)”

D. 以上的把握認為“生育意愿與城市級別無關(guān)”

【答案】B

【解析】分析:根據(jù)獨立性檢驗求得值,與臨界值比較,即可判斷是否有關(guān)。

詳解:根據(jù)

所以有以上的把握認為生育意愿與城市級別有關(guān),或在犯錯誤的概率不超過的前提下,認為生育意愿與城市級別有關(guān)”。

所以選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義為n個正數(shù)的“均倒數(shù)”已知正項數(shù)列{an}的前n項的“均倒數(shù)”為

(1)求數(shù)列{an}的通項公式

(2)設(shè)數(shù)列的前n項和為,若4<對一切恒成立試求實數(shù)m的取值范圍

(3)令,問:是否存在正整數(shù)k使得對一切恒成立,如存在求出k值,否則說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,函數(shù) 的定義域為M,則RM為(
A.[﹣1,1]
B.(﹣1,1)
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比為q的等比數(shù)列.
(1)試推導(dǎo){an}的前n項和公式;
(2)設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(1)討論函數(shù)極值點的個數(shù),并說明理由;

(2)若,成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2019年舉行促銷活動,經(jīng)過調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用)(單位:萬元)滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).

(1)將該廠家2019年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

(2)該廠家2019年的年促銷費用投入多少萬元時,廠家利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: ,且.

1)求證:數(shù)列是等比數(shù)列;

2)設(shè)是數(shù)列的前項和,若對任意都成立.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,,

(1)證明:

(2)若,,四面體的體積為2,求二面角的余弦值

查看答案和解析>>

同步練習(xí)冊答案