【題目】如圖,已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于,兩點(diǎn),是中點(diǎn).
(Ⅰ)當(dāng)與垂直時,求證:過圓心;
(Ⅱ)當(dāng)時,求直線的方程;
(Ⅲ)設(shè),試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
【答案】(I)證明見解析;(II)或;(III)的值為定值.
【解析】
試題分析:(I)由已知,故,所以直線的方程為,即可證明;(II)當(dāng)直線與軸垂直時,易知符合題意;當(dāng)直線與軸不垂直時,設(shè)直線的方程為,利用圓心到直線的距離等于半徑,即可求解;(III)當(dāng)與軸垂直時,易得,,求得;當(dāng)的斜率存在時,設(shè)直線的方程為,代入圓的方程,利用根與系數(shù)的關(guān)系,化簡即可求解定值.
試題解析:(Ⅰ)由已知,故,所以直線的方程為.
將圓心代入方程易知過圓心.
(Ⅱ)當(dāng)直線與軸垂直時,易知符合題意;
當(dāng)直線與軸不垂直時,設(shè)直線的方程為,由于,
所以,由,解得.
故直線的方程為或.
(Ⅲ)當(dāng)與軸垂直時,易得,,又,則,
,故,即.
當(dāng)的斜率存在時,設(shè)直線的方程為,代入圓的方程得
,則.
,即,
.又由得,
則.
故,
綜上,的值為定值,且.
另解一:連結(jié),延長交于點(diǎn),由(Ⅰ)知,又于,
故.于是有.
由,,得.
故.
另解二:連結(jié)并延長交直線于點(diǎn),連結(jié),,由(Ⅰ)知,又,
所以四點(diǎn)都在以為直徑的圓上,由相交弦定理得
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出;當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金為多少元時,租賃公司的月收益最大?最大收益為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面是菱形的四棱錐中,,點(diǎn)在上,且,面面.
(1)證明:;
(2)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在處有極值,求函數(shù)的最大值;
(2)①是否存在實(shí)數(shù),使得關(guān)于的不等式在上恒成立?若存在,求出的取值范圍;若不存在,說明理由;
②證明:不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題一定正確的是( )
A. 三點(diǎn)確定一個平面 B. 依次首尾相接的四條線段必共面
C. 直線與直線外一點(diǎn)確定一個平面 D. 兩條直線確定一個平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣一道題:把120個面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最少的那份有( )個面包.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC.點(diǎn)M,N分別是CC1,B1C的中點(diǎn),G是棱AB上的動點(diǎn).
(1)求證:B1C⊥平面BNG;
(2)若CG∥平面AB1M,試確定G點(diǎn)的位置,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com