【題目】已知函數(shù)的圖象上有且僅有兩個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則實(shí)數(shù)的取值范圍是________

【答案】

【解析】

求出直線關(guān)于直線對(duì)稱的直線的方程,然后將問題轉(zhuǎn)化為直線與函數(shù)的圖象有兩個(gè)交點(diǎn),構(gòu)造函數(shù),將問題轉(zhuǎn)化為直線與函數(shù)的圖象有兩個(gè)交點(diǎn),利用數(shù)形結(jié)合思想可求出實(shí)數(shù)的取值范圍.

直線關(guān)于直線對(duì)稱的直線的方程為,即,對(duì)應(yīng)的函數(shù)為.

所以,直線與函數(shù)的圖象有兩個(gè)交點(diǎn).

對(duì)于一次函數(shù),當(dāng)時(shí),,且.

則直線與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)不可能為.

當(dāng)時(shí),令,可得,

此時(shí),令.

當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),.

此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

函數(shù)的極小值為

當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),.

此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

函數(shù)的極大值為.

作出函數(shù)和函數(shù)的圖象如下圖所示:

由圖象可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)的圖象有兩個(gè)交點(diǎn).

因此,實(shí)數(shù)的取值范圍是.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孔子曰:溫故而知新.數(shù)學(xué)學(xué)科的學(xué)習(xí)也是如此.為了調(diào)查數(shù)學(xué)成績與及時(shí)復(fù)習(xí)之間的關(guān)系,某校志愿者展開了積極的調(diào)查活動(dòng):從高三年級(jí)640名學(xué)生中按系統(tǒng)抽樣抽取40名學(xué)生進(jìn)行問卷調(diào)查,所得信息如下:

數(shù)學(xué)成績優(yōu)秀(人數(shù))

數(shù)學(xué)成績合格(人數(shù))

及時(shí)復(fù)習(xí)(人數(shù))

20

4

不及時(shí)復(fù)習(xí)(人數(shù))

10

6

1)張軍是640名學(xué)生中的一名,他被抽中進(jìn)行問卷調(diào)查的概率是多少(用分?jǐn)?shù)作答);

2)根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)的基本思想,研究數(shù)學(xué)成績與及時(shí)復(fù)習(xí)的相關(guān)性.

參考公式:,其中為樣本容量

臨界值表:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.

1)求圓的極坐標(biāo)方程;

2)若直線為參數(shù))被圓截得的弦長為2,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的連續(xù)函數(shù)fx)滿足fx)=f2x),導(dǎo)函數(shù)為fx).當(dāng)x1時(shí),2fx+x1fx)>0,且f(﹣1,則不等式fx)<6x12的解集為(

A.(﹣1,1)∪(14B.(﹣1,1)∪(13

C.,1)∪(12D.,1)∪(1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+sinθ)=8

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若射線m的極坐標(biāo)方程為θρ≥0),設(shè)mC相交于點(diǎn)M(非坐標(biāo)原點(diǎn)),ml相交于點(diǎn)N,點(diǎn)P6,0),求△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).

1)若,求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,,過點(diǎn)的直線與橢圓相交于點(diǎn),兩點(diǎn)(兩點(diǎn)均在軸的上方),且,

1)若,求橢圓的方程;

2)直線的斜率;

3)求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。

A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)設(shè),當(dāng)時(shí),判斷是否存在使得,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案