已知函數(shù)y=f(x)在(0,+∞)上是減函數(shù),且f(m2-2m)>f(m),求m的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的單調(diào)性把不等式逐步轉(zhuǎn)化求解即可.
解答: 解:∵函數(shù)y=f(x)在(0,+∞)上是減函數(shù),
∴f(m2-2m)>f(m)等價于
m2-2m>0
m>0
m2-2m<m
     解得 2<m<3.
∴m的取值范圍是(2,3).
點(diǎn)評:考查學(xué)生運(yùn)用函數(shù)的單調(diào)性的性質(zhì)解決問題的能力及等價轉(zhuǎn)化問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①y=ln2,則y′=
1
2
;
②y=
1
x2
,則y′|x=3=-
2
27

③y=2x,則y′=2x•ln2;
④y=log2x,則y′=
1
xln2

其中正確命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
-2,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 6.5 3 2.17 2.05 2.005 2 2.005 2.02 2.04 2. 3 3 3.8 5.57
請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
(Ⅰ)函數(shù)f(x)=x+
4
x
-2(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=x+
4
x
-2(x>0)在區(qū)間
 
上遞增;當(dāng)x=
 
時,y最小=
 

(Ⅱ)證明:函數(shù)f(x)=x+
4
x
-2(x>0)在區(qū)間(0,2)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),
(Ⅰ)若f(x)=2f′(x),求
1+sin2x
cos2x-sinxcosx
的值;
(Ⅱ)若x∈[0,2π],求g(x)=
f(x)-f′(x)
4+f(x)+f′(x)
的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)f(x)在(a,b)上單調(diào)遞增,試判斷f(x)在(-b,-a)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠A,∠B,∠C所對邊分別為a,b,c,且bsinC+2csinBcosA=0.
(1)求∠A大。
(2)若a=2
3
,c=2,求△ABC的面積S的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某少兒電視節(jié)目組邀請了三組明星家庭(明星爸爸及其孩子)一起參加50米趣味賽跑活動.已知這三組家庭的各方面情況幾乎相同,要求從比賽開始明星爸爸必須為自己的孩子領(lǐng)跑,直至其完成比賽.記這三位爸爸分別為A、B、C,其孩子相應(yīng)記為D、E、F.
(Ⅰ)若A、B、D、E為前四名,求第三名為孩子E的概率;
(Ⅱ)若孩子F的成績是第6名,求孩子E的成績?yōu)榈谌母怕剩?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-b
x2+1
在點(diǎn)(1,f(1))的切線方程為x-y-1=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=lnx,求證:g(x)≥f(x)在x∈[1,+∞)上恒成立;
(Ⅲ)已知0<a<b,求證:
lnb-lna
b-a
2a
a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有形狀、大小完全相同的10個紅球、20個白球,從中隨機(jī)取出5個,則紅球恰好為4個的概率為
 
(結(jié)果精確到0.01).

查看答案和解析>>

同步練習(xí)冊答案