【題目】已知向量| |=2,| |=1,(2 ﹣3 )(2 )=9.
(1)求向量 與向量 的夾角θ;
(2)求向量 在 方向上的投影.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán) | 未參加書法社團(tuán) | |
參加演講社團(tuán) | 8 | 5 |
未參加演講社團(tuán) | 2 | 30 |
(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;
(2)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1 , A2 , A3 , A4 , A5 , 3名女同學(xué)B1 , B2 , B3 . 現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,其中.
(1)求函數(shù)的極大值點(diǎn);
(2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動(dòng)點(diǎn),求的中點(diǎn)到直線: 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù)y=2sin(2x﹣ )的一條對(duì)稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù)
④存在實(shí)數(shù)α,使 sin(α+ )=
以上四個(gè)命題中正確的有(填寫正確命題前面的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中.直線的參數(shù)方程為為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn).以軸非負(fù)半軸為極軸)中.圓的極坐標(biāo)方程是.
(1)寫出直線的直角坐標(biāo)方程,并把圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)圓上的點(diǎn)到直線的距離最小,點(diǎn)到直線的距離最大,求點(diǎn)的橫坐標(biāo)之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù)x、y、m滿足|x﹣m|>|y﹣m|,則稱x比y遠(yuǎn)離m.
(1)若x2﹣1比3遠(yuǎn)離0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為.
(1)若,過(guò)點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值;
(2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問(wèn):是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知幾何體P﹣ABCD如圖,面ABCD為矩形,面ABCD⊥面PAB,且面PAB為正三角形,若AB=2,AD=1,E、F分別為AC、BP中點(diǎn),
(Ⅰ)求證:EF∥面PCD;
(Ⅱ)求直線BP與面PAC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com