已知復數(shù)z1=a+bi與z2=c+di(a,b,c,d∈R,z2≠0),則
z1
z2
∈R的充要條件是(  )
A、ad+bc=0
B、ac+bd.=0
C、ac-bd=0
D、ad-bc=0
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據復數(shù)的基本運算和充分條件和必要條件的定義即可得到結論.
解答: 解:∵
z1
z2
=
a+bi
c+di
=
(a+bi)(c-di)
(c+di)(c-di)
=
ac+bd+(bc-ad)i
c2+d2

∴則
z1
z2
∈R的充要條件ad-bc=0.
故選:D.
點評:本題主要考查充分條件和必要條件的判斷,利用復數(shù)的有關概念是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某學校選修羽毛球課程的學生中,高一,高二年級分別有80名,50名.現(xiàn)用分層抽樣的方法在這130名學生中抽取一個樣本,已知在高一年級學生中抽取了24名,則在高二年級學生中應抽取的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線f(x)=sin2x+
3
cos2x關于點(x0,0)成中心對稱,若x0∈[0,
π
2
],則x0=( 。
A、
π
12
B、
π
6
C、
π
3
D、
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)是( 。
①已知復數(shù)z=i(1-i),z在復平面內對應的點位于第四象限;
②若x,y是實數(shù),則“x2≠y2”的充要條件是“x≠y或x≠-y”;
③命題P:“?x0∈R,
x
2
0
-x0-1>0”的否定¬P:“?x∈R,x2-x-1≤0”.
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓O中,弦PQ滿足|PQ|=2,則
PQ
PO
=( 。
A、2
B、1
C、
1
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x≥0
y≥0
y≤2
2x+y≤6
,則目標函數(shù)z=x+2y的最大值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x≤2},B={x|x2<4x},則A∩∁RB=( 。
A、(-∞,0]
B、(-∞,0)
C、[-1,1]
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
x-3
x-1
≥0的解集是( 。
A、{x|x≤1或x≥3}
B、{x|x<1或x≥3}
C、{x|1<x≤3}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,a3+2是a2與a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)假設bn=
an
(an+1)(an+1+1)
,其數(shù)列{bn}的前n項和Tn,并解不等式Tn
127
390

查看答案和解析>>

同步練習冊答案