圓O中,弦PQ滿足|PQ|=2,則
PQ
PO
=( 。
A、2
B、1
C、
1
2
D、4
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:如圖,設∠QPO=θ,作OM⊥PQ,利用垂徑定理可得PM=
1
2
PQ=1.再利用數(shù)量積和投影的意義即可得出.
解答: 解:如圖,設∠QPO=θ,作OM⊥PQ,則PM=
1
2
PQ=1.
PQ
PO
=|
PQ
| |
PO
|cosθ
=2×|PM|=2.
故選:A.
點評:本題考查了垂徑定理、數(shù)量積和投影的意義,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+tx-t(t<0),集合A={x|f(x)<0},若A∩Z(Z為整數(shù)集)中恰有一個元素,則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x∈R|-3≤x≤1},N={x∈R|x+1<0},那么M∩N=( 。
A、{-1,0,1}
B、{-3,-2,-1}
C、{x|-1≤x≤1}
D、{x|-3≤x<-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈(0,+∞),則“ab>2”是“l(fā)og2a+log2b>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“α=
π
4
”是“cos2α=0”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不是充分條件也不是必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=a+bi與z2=c+di(a,b,c,d∈R,z2≠0),則
z1
z2
∈R的充要條件是(  )
A、ad+bc=0
B、ac+bd.=0
C、ac-bd=0
D、ad-bc=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐的底面半徑是r,高是h,在這個圓錐內(nèi)部有一個正方體.正方體的一個面在圓錐的底面上,與這個面相對的面的四個頂點在圓錐的側面上,則此正方體的棱長為(  )
A、
rh
r+h
B、
2rh
r+h
C、
2rh
2
h+2r
D、
2rh
2
r+h

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖,則該幾何體的體積為( 。
A、6π+4
B、12π+4
C、6π+12
D、12π+12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市2001年底市區(qū)人口總數(shù)為300萬,人均住房面積為15m2,如果該城市市區(qū)每年人口的平均增長率為3%,而每年平均新建住房面積為600萬m2,那么到2011年底,該城市市區(qū)的人均住房面積約為多少?(精確到1m2

查看答案和解析>>

同步練習冊答案