【題目】如圖,是半圓的直徑,平面與半圓所在的平面垂直,,, ,是半圓上不同于,的點(diǎn),四邊形是矩形.
(Ⅰ)若,證明:平面;
(Ⅱ)若,求三棱錐體積的最大值.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ).
【解析】
(Ⅰ)先證明平面,從而可得,過(guò)點(diǎn)作,垂足為,可得到,由勾股定理可得,從而可證.
(Ⅱ)過(guò)點(diǎn)作,垂足為,可得,由,作于,由(Ⅰ)知平面,則是三棱錐的高,當(dāng)最大,即點(diǎn)與點(diǎn)重合時(shí),三棱錐的體積最大,從而可求出答案.
(Ⅰ)∵平面與半圓所在的平面垂直,
∴平面平面,
又平面平面,,
∴平面
∵平面,
∴,
∵是半圓上一點(diǎn),
∴,
又,
∴平面,
∵平面,
∴
∵四邊形是矩形,
∴,
由,,,過(guò)點(diǎn)作,垂足為,
則,,
,,
∴,
∴
又,
∴平面
(Ⅱ)在平面內(nèi),作于,由(Ⅰ)知平面,
則是三棱錐的高,
∴當(dāng)最大,即點(diǎn)與點(diǎn)重合時(shí),三棱錐的體積最大,此時(shí)
∵,,過(guò)點(diǎn)作,垂足為,
則,,
∴,
∴三棱錐體積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在 中, 所對(duì)的邊分別為,且.
(1)求角的大小;
(2)若, , 為的中點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類似《最強(qiáng)大腦》的 PK 賽,兩隊(duì)各由 4 名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(a>b>0)經(jīng)過(guò)點(diǎn),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A(0,b),B(a,0),點(diǎn)P是橢圓C上位于第三象限的動(dòng)點(diǎn),直線AP、BP分別將x軸、y軸于點(diǎn)M、N,求證:|AN||BM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過(guò)定點(diǎn)P(3,5),傾斜角為.
(1)寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來(lái)自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)國(guó)家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個(gè)總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.
(3)在接受調(diào)查的人中,有人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下: , , , , , , , , , ,把這個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】M是正方體的棱的中點(diǎn),給出下列四個(gè)命題:①過(guò)M點(diǎn)有且只有一條直線與直線都相交;②過(guò)M點(diǎn)有且只有一條直線與直線都垂直;③過(guò)M點(diǎn)有且只有一個(gè)平面與直線都相交;④過(guò)M點(diǎn)有且只有一個(gè)平面與直線都平行;其中真命題是( )
A.②③④B.①③④C.①②④D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖如示的多面體中,平面平面,四邊形是邊長(zhǎng)為的正方形, ∥,且.
(1)若分別是中點(diǎn),求證: ∥平面
(2)求此多面體的體積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com