證明:f(x)=x2-2x在區(qū)間(1,+∞)上遞增.
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)單調(diào)性的定義證明即可.
解答: 證明:取任意的x1<x2∈(1,+∞),
f(x1)-f(x2)=x12-2x1-(x22-2x2)
=x12-2x1-x22+2x2,
=(x12-x22)-2(x1-x2),
=(x1+x2)(x1-x2)-2(x1-x2),
=(x1-x2)(x1+x2-2),
∵x1<x2∈(1,+∞),
∴x1-x2<0,x1+x2-2>0
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)=x2-2x在區(qū)間(1,+∞)上遞增.
點評:本題主要考查了函數(shù)的單調(diào)性用定義證明的方法,注意計算和判斷符號,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

物體自由落體運動方程為s(t)=
1
2
gt2
,若
lim
n→∞
s(1+△t)-s(1)
△t
=g=9.8m/s,那么下面說法正確的是(  )
A、9.8m/s是0~1s這段時間內(nèi)的平均速度
B、9.8m/s是從1s到(1+△t)s這段時間內(nèi)的速度
C、9.8m/s是物體在t=1s這一時刻的速度
D、9.8m/s是物體從1s到(1+△t)s這段時間內(nèi)的平均速度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果圓柱的軸截面周長為定值4,則圓柱體積的最大值為( 。
A、
8
27
π
B、
16
27
π
C、
8
9
π
D、
16
9
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

常說“便宜沒好貨”,這句話的意思是:“不便宜”是“好貨”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y之間的數(shù)據(jù)如下表所示,則y與x之間的線性回歸方程必過點( 。
x 1.08 1.12 1.19 1.30
y 2.25 2.37 2.40 2.60
A、(0,0)
B、(1.17,0)
C、(0,2.41)
D、(1.17,2.41)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某汽車廠有一條價值為a萬元的汽車生產(chǎn)線,現(xiàn)要通過技術(shù)改造來提高該生產(chǎn)線的生產(chǎn)能力,提高產(chǎn)品的增加值.經(jīng)過市場調(diào)查,產(chǎn)品的增加值y萬元與技術(shù)改造投入的x萬元之間滿足:①y與(a-x)和x2的乘積成正比;②x∈(0,
2am
2m+1
],其中m是常數(shù).若x=
a
2
時,y=a3
(1)求產(chǎn)品增加值y關(guān)于x的表達式;
(2)求產(chǎn)品增加值y的最大值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的兩個同心圓盤均被n等分(n∈N+且n≥2),在相重疊的扇形格中依次同時填上1,2,3,L,n,內(nèi)圓盤可繞圓心旋轉(zhuǎn),每次可旋轉(zhuǎn)一個扇形格,當內(nèi)圓盤旋轉(zhuǎn)到某一位置時,定義所有重疊扇形格中兩數(shù)之積的和為此位置的“旋轉(zhuǎn)和”.
(Ⅰ)求n個不同位置的“旋轉(zhuǎn)和”的和;
(Ⅱ)當n為偶數(shù)時,求n個不同位置的“旋轉(zhuǎn)和”的最小值;
(Ⅲ)設n=4m(m∈N+),在如圖所示的初始位置將任意m對重疊的扇形格中的兩數(shù)均改寫為0,證明:當m≤4時,通過旋轉(zhuǎn),總存在一個位置,任意重疊的扇形格中兩數(shù)不同時為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+2x)e-x,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f′(x)>1,求證:f(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

讀該程序圖(其中x滿足:0<x<12)
(1)請寫出該程序表示的函數(shù)關(guān)系式.
(2)若該程序輸出的結(jié)果為6,則輸入的x值.

查看答案和解析>>

同步練習冊答案