【題目】函數(shù) 在 處取得極值.
(1)求 的單調(diào)區(qū)間;
(2)若 在定義域內(nèi)有兩個不同的零點,求實數(shù) 的取值范圍.
【答案】(1);(2).
【解析】試題分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),計算f′(1),求出a的值,從而求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)問題轉(zhuǎn)化為f(x)=m+1在(0,+∞)內(nèi)有兩個不同的根,結(jié)合函數(shù)的圖象求出m的范圍即可.
試題解析:
(1) ,
,解得 ,
當(dāng) 時, ,
即 ,令 ,解得 ;
令 ,解得 .
所以 在 處取得極小值, 的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為 .
(2) 在 內(nèi)有兩個不同的零點,
可轉(zhuǎn)化為 在 內(nèi)有兩個不同的根,
也可轉(zhuǎn)化為 與 的圖象有兩個不同的交點,
由(1)知, 在 上單調(diào)遞減,在 上單調(diào)遞增, ,
由題意得, 即
當(dāng) 時, ;
當(dāng) 且 時, ;
當(dāng) 時,顯然 (或者舉例:當(dāng) , ).
如圖,
由圖象可知, ,即
由 可得 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應(yīng)年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預(yù)報的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最。
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),點在軸上,點在軸上,且,.
(1)當(dāng)點在軸上運動時,求點的軌跡的方程;
(2)設(shè)點是軌跡上的動點,點在軸上,圓內(nèi)切于,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關(guān).
平均車速超過 100km/h人數(shù) | 平均車速不超過 100km/h人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù): ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊扇形鐵皮OAB,∠AOB=60°,OA=72cm,要剪下來一個扇環(huán)形ABCD,作圓臺容器的側(cè)面,并且在余下的扇形OCD內(nèi)能剪下一塊與其相切的圓形使它恰好作圓臺容器的下底面(大底面).試求:
(1)AD應(yīng)取多長?
(2)容器的容積為多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.
(1)求的長;
(2)在以為極點, 軸的正半軸為極軸建立極坐標系,設(shè)點的極坐標為,求點到線段中點的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市需對某環(huán)城快速車道進行限速,為了調(diào)研該道路車速情況,于某個時段隨機對輛車的速度進行取樣,測量的車速制成如下條形圖:
經(jīng)計算:樣本的平均值,標準差,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.
(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;
(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;
(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品上市30天內(nèi)每件的銷售價格元與時間天函數(shù)關(guān)系是
該商品的日銷售量件與時間天函數(shù)關(guān)系是
.(1)求該商品上市第20天的日銷售金額;
(2)求這個商品的日銷售金額的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com