【題目】設(shè),點(diǎn)軸上,點(diǎn)軸上,且,.

(1)當(dāng)點(diǎn)軸上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)是軌跡上的動(dòng)點(diǎn),點(diǎn)軸上,圓內(nèi)切于,求的面積的最小值.

【答案】(1);(2).

【解析】試題分析:(1)依據(jù)題設(shè)條件直接建立坐標(biāo)之間的等量關(guān)系(軌跡方程);(2)依據(jù)題設(shè)條件建立關(guān)于三角形面積公式的函數(shù)關(guān)系,最后再運(yùn)用所學(xué)知識(shí)求其最小值:

試題解析:

解:(1)設(shè),由,得點(diǎn)為線段的中點(diǎn),

,,∴.

,得.

所以動(dòng)點(diǎn)的軌跡的方程為.

(2)設(shè),,,且,

∴直線的方程為,整理得: .

∵圓內(nèi)切于,可得與圓相切,∴,

注意到,化簡(jiǎn)得:,

同理可得:,

因此,是方程的兩個(gè)不相等的實(shí)數(shù)根.

根據(jù)根與系數(shù)的關(guān)系,化簡(jiǎn)整理可得 ,

由此可得的面積為 ,

∴當(dāng)時(shí),即當(dāng)時(shí),的面積的最小值為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.

(1)求證:BC⊥平面BDE;

(2)若點(diǎn)D到平面BEC的距離為,求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了實(shí)現(xiàn)60萬元的生源利潤(rùn)目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)招生人員的獎(jiǎng)勵(lì)方案:在生源利潤(rùn)達(dá)到5萬元時(shí),按生源利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且資金y(單位:萬元)隨生源利潤(rùn)x(單位:萬元)的增加而增加,但資金總數(shù)不超過3萬元,同時(shí)獎(jiǎng)金不超過利潤(rùn)的20%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y=0.2x,y=log5x,y=1.02x,其中哪個(gè)模型符合該校的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABAD,ABCDAB2AD2CD2,EPB的中點(diǎn).

(1)求證:平面EAC平面PBC;

(2)若二面角PACE的余弦值為,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,,分別為的中點(diǎn),.

(1)求證:平面平面

(2)設(shè),若平面與平面所成銳二面角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exe-x(xRe為自然對(duì)數(shù)的底數(shù)).

(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.

(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家醫(yī)藥研究所,從中草藥中提取并合成了甲、乙兩種抗“病毒”的藥物,經(jīng)試驗(yàn),服用甲、乙兩種藥物痊愈的概率分別為.現(xiàn)已進(jìn)入藥物臨床試用階段,每個(gè)試用組由4位該病毒的感染者組成,其中2人試用甲種抗病毒藥物,2人試用乙種抗病毒藥物,如果試用組中,甲種抗病毒藥物治愈人數(shù)超過乙種抗病毒藥物的治愈人數(shù),則稱該組為“甲類組”.

(1)求一個(gè)試用組為“甲類組”的概率;

(2)觀察3個(gè)試用組,用表示這3個(gè)試用組中“甲類組”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 處取得極值.

1)求 的單調(diào)區(qū)間;

2)若 在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數(shù)方程為

1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;

2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案