【題目】如圖所示,在四面體VABC木塊中,P為△VAC的重心,這點P作截面EFGH,若截面EFGH是平行四邊形,則該截面把木塊分成兩部分體積之比為____________. (填體積小與體積大之比

【答案】

【解析】

,且,連接,則多面體的體積等于四棱錐的體積與三棱錐的體積之和,多面體的體積等于四棱錐的體積與三棱錐的體積和,找出多面體的體積的關(guān)系,得到答案

如圖,因為四邊形為平行四邊形,所以,且,

所以平面,又平面,平面平面

所以,,

因為P的中心,所以,

,所以

連接,

則多面體的體積等于四棱錐的體積與三棱錐的體積和,

多面體的體積等于四棱錐的體積與三棱錐的體積和

因為四棱錐的高是四棱錐的高的2倍,底面積相等,

所以四棱錐的體積是四棱錐的體積的2倍;

因為三棱錐的底面是三棱錐的底面面積的倍,高是3倍,

所以三棱錐的體積是三棱錐的體積的4倍,

設(shè)論證的體積為,則三棱錐的體積為,四棱錐的體積是,所以多面體的體積是

又多面體的體積等于,

所以多面體的體積與多面體的體積比等于.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一個化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:

原料
種類

磷酸鹽(單位:噸)

硝酸鹽(單位:噸)

4

20

2

20

現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計劃在此基礎(chǔ)上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設(shè)x,y分別表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學關(guān)系式,并畫出相應的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤為3萬元;生產(chǎn)1車皮乙種肥料,利潤為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣tx2+3x,若對于任意的a∈[1,2],b∈(2,3],函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減,則實數(shù)t的取值范圍是( 。
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.

(1)求證:MN∥平面PAD;

(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若兩直線的傾斜角分別為 ,則下列四個命題中正確的是( )

A. <,則兩直線的斜率:k1 < k2 B. =,則兩直線的斜率:k1= k2

C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.

(1)求a和b的值;

(2)設(shè)函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an},a2=8,前9項和為153.
(1)求a5an;
(2)若 ,證明數(shù)列{bn}為等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Ω是一個與x軸的正半軸、y軸的正半軸分別相切于點C、D的定圓所圍成區(qū)域(含邊界),A、B、C、D是該圓的四等分點,若點P(x,y)、P′(x′,y′)滿足x≤x′且y≥y′,則稱P優(yōu)于P′,如果Ω中的點Q滿足:不存在Ω中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣弧(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案