精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x3﹣tx2+3x,若對于任意的a∈[1,2],b∈(2,3],函數f(x)在區(qū)間(a,b)上單調遞減,則實數t的取值范圍是(  )
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

【答案】D
【解析】∵函數f(x)=x3﹣tx2+3x,f′(x)=3x2﹣2tx+3,
若對于任意的a∈[1,2],b∈(2,3],函數f(x)在區(qū)間(a,b)上單調遞減,
則f′(x)≤0即3x2﹣2tx+3≤0在[1,3]上恒成立,
, 解得t≥5,
故選D.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統計研究,針對籃球運動員在投籃命中時,運動員距籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統計,依據統計結果繪制如下頻率分布直方圖:

(1)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;

(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠越好),并從抽到的這7次成績中隨機抽取2次,并規(guī)定:成績來自2到3米這一組時,記1分;成績來自3到4米這一組時,記2分;成績來4到5米的這一組記 4分,求該運動員2次總分不少于5分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若無窮數列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱{an}具有性質P.
(1)若{an}具有性質P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數列{bn}是等差數列,無窮數列{cn}是公比為正數的等比數列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質P,并說明理由;
(3)設{bn}是無窮數列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1 , {an}都具有性質P”的充要條件為“{bn}是常數列”.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,時取得極值.

(1)求f(x)的單調區(qū)間;

(2)求證:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若定義在R上的函數 滿足 ,其導函數 滿足 ,則下列結論中一定錯誤的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設分店,為了確定在該區(qū)開設分店的個數,該公司對該市已開設分店聽其他區(qū)的數據作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數, 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經過初步判斷,可用線性回歸模型擬合的關系,求關于的線性回歸方程;

(2)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在區(qū)開設多少個分店時,才能使區(qū)平均每個店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四面體VABC木塊中,P為△VAC的重心,這點P作截面EFGH,若截面EFGH是平行四邊形,則該截面把木塊分成兩部分體積之比為____________. (填體積小與體積大之比

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果數列a1 , a2 , a3 , … , an , …是等差數列,那么下列數列中不是等差數列的是:(
A.a1+x , a2+x , a3+x , …,an+x ,
B.ka1 , ka2 , ka3 , …,kan ,
C.
D.a1 , a4 , a7 , …a3n2 ,

查看答案和解析>>

同步練習冊答案