【題目】設(shè)O為△ABC的外心,若 + + = ,則M是△ABC的( )
A.重心(三條中線交點(diǎn))
B.內(nèi)心(三條角平分線交點(diǎn))
C.垂心(三條高線交點(diǎn))
D.外心(三邊中垂線交點(diǎn))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b是方程x2﹣2 +2=0的兩根,且2cos(A+B)=﹣1
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在 中,內(nèi)角 , , 所對(duì)的邊分別為 , , ,已知 , .
(1)當(dāng) 時(shí),求 的面積;
(2)求 周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) , 是平面 的一組基底,則能作為平面 的一組基底的是( )
A. ﹣ , ﹣
B. +2 , +
C.2 ﹣3 ,6 ﹣4
D. + , ﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的上頂點(diǎn)M與左、右焦點(diǎn)F1、F2構(gòu)成三角形MF1F2面積為 ,又橢圓C的離心率為 .
(1)求橢圓C的方程;
(2)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的k倍,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M=10a2+81a+207,P=a+2,Q=26﹣2a,若將lgM,lgQ,lgP適當(dāng)排序后可構(gòu)成公差為1的等差數(shù)列{an}的前三項(xiàng). (Ⅰ)求a的值及{an}的通項(xiàng)公式;
(Ⅱ)記函數(shù) 的圖像在x軸上截得的線段長(zhǎng)為bn , 設(shè) ,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點(diǎn),且 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是( )
A.( , )
B.( , )
C.( , )
D.(0, )∪( ,π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com