【題目】如圖,在四棱錐中, 是等邊三角形, 為的中點(diǎn),四邊形為直角梯形, .
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)在棱上是否存在點(diǎn),使得平面?說明理由.
【答案】(1)證明見解析;(2);(3)存在為中點(diǎn).
【解析】試題分析:(1)由 根據(jù)線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可得結(jié)論;(2)連接因?yàn)椤?/span>為等邊三角形, 為中點(diǎn),所以.因?yàn)?/span>平面,所以,由線面垂直的性質(zhì)可得平面,即是棱錐高,算出底面面積,利用棱錐的體積公式可得結(jié)果;(3)棱上存在點(diǎn),使得∥平面,取中點(diǎn),連接由中位線定理及線面平行的判定定理可得∥平面,可得平面∥平面.再利用面面平行的性質(zhì)可得結(jié)論.
試題解析:(1) 因?yàn)?/span>, , ,
所以平面.因?yàn)?/span>平面,
所以平面平面.
(2)連接.
因?yàn)椤?/span>為等邊三角形, 為中點(diǎn),所以.
因?yàn)?/span>平面,所以
因?yàn)?/span>,所以平面.
所以.
在等邊△中,,
,
所以.
(3)棱上存在點(diǎn),使得∥平面,此時(shí)點(diǎn)為中點(diǎn).取中點(diǎn),連接.因?yàn)?/span>為中點(diǎn), 所以∥.
因?yàn)?/span>平面,所以∥平面.因?yàn)?/span>為中點(diǎn),
所以∥.因?yàn)?/span>平面,所以∥平面.
因?yàn)?/span>,所以平面∥平面.
因?yàn)?/span>平面,所以∥平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn),,且.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)上述的取值范圍為,若存在,使對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某批次的某種燈泡中,隨機(jī)地抽取個(gè)樣品,并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)等級(jí),其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命(天) | 頻數(shù) | 頻率 |
合計(jì) |
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出, 的值.
(Ⅱ)某人從燈泡樣品中隨機(jī)地購買了個(gè),求個(gè)燈泡中恰有一個(gè)是優(yōu)等品的概率.
(Ⅲ)某人從這個(gè)批次的燈泡中隨機(jī)地購買了個(gè)進(jìn)行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·安徽名校階段性測試)如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點(diǎn),AE=3,圓O的直徑CE=9.
(1)求證:平面ABE⊥平面ADE;
(2)求五面體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知曲線在處的切線的方程為,且.
(1)求的取值范圍;
(2)當(dāng)時(shí), ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD, 為線段的中點(diǎn), 在線段上.
(I)當(dāng)是線段的中點(diǎn)時(shí),求證:PB // 平面ACM;
(II)求證: ;
(III)是否存在點(diǎn),使二面角的大小為60°,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形, 平面,且是的中點(diǎn).
(1)求證: 平面;
(2)求二面角的余弦值的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com