【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn),

(1)求實(shí)數(shù)的取值范圍

(2)設(shè)上述的取值范圍為,若存在,使對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍

【答案】(1)(2).

【解析】

試題分析:(1)注意函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),令,,根據(jù)方程有兩個(gè)不等正根,求出的范圍;(2)求出函數(shù)上的單調(diào)性,并求出最大值,已知恒成立轉(zhuǎn)化為恒成立,設(shè),則的最小值大于即可,討論函數(shù)的單調(diào)性,求出的范圍.

試題解析:(1)

,,

根據(jù)題意,方程有兩個(gè)不等正根,則

解得,

故實(shí)數(shù)的取值范圍是

(2)由

所以上是增函數(shù),

因?yàn)?/span>,所以上是增函數(shù),

當(dāng)時(shí)

由題意,當(dāng)時(shí),恒成立,

,恒成立

設(shè),

(1)當(dāng)時(shí),因?yàn)?/span>,,所以上是減函數(shù),

此時(shí),不合題意

(2)當(dāng)時(shí),因?yàn)?/span>,,,

所以上是增函數(shù),此時(shí),符合題意

,,

當(dāng)時(shí),,,所以上是減函數(shù),

此時(shí),,不合題意

綜上可知,的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線與曲線滿(mǎn)足下列兩個(gè)條件:

(i)直線在點(diǎn)處與曲線相切;(ii)曲線在點(diǎn)附近位于直線的兩側(cè).則稱(chēng)直線在點(diǎn)處“切過(guò)”曲線.

下列命題正確的是__________(寫(xiě)出所有正確命題的編號(hào)).

①直線在點(diǎn)處“切過(guò)”曲線;

②直線在點(diǎn)處“切過(guò)”曲線;

③直線在點(diǎn)處“切過(guò)”曲線

④直線在點(diǎn)處“切過(guò)”曲線;

⑤直線在點(diǎn)處“切過(guò)”曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,飛鏢的標(biāo)靶呈圓盤(pán)形,圓盤(pán)被10等分,按如圖所示染色為Ⅰ、Ⅱ、Ⅲ三部分,某人依次將若干支飛鏢投向標(biāo)靶,如果每次投射都是相互獨(dú)立的.

(1)如果他投向標(biāo)靶的飛鏢恰有2支且都擊中標(biāo)靶,同時(shí)每支飛鏢擊中標(biāo)靶的任意位置都是等可能的,求“第Ⅰ部分被擊中2次或第Ⅱ部分被擊中2次”的概率;

(2)如果他投向標(biāo)靶的飛鏢恰有4支,且他投射1支飛鏢,擊中標(biāo)靶的概率為,設(shè)表示標(biāo)靶被擊中的次數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三年級(jí)有名學(xué)生,隨機(jī)抽查了名學(xué)生,測(cè)試分鐘仰臥起坐的成績(jī)(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計(jì)總體,下列結(jié)論正確的是( )

A. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為

B. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為

C. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)超過(guò)次的人數(shù)約有

D. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018百校聯(lián)盟TOP20一月聯(lián)考函數(shù)處的切線斜率為

I)討論函數(shù)的單調(diào)性;

II)設(shè), ,對(duì)任意的,存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了準(zhǔn)確把握市場(chǎng),做好產(chǎn)品計(jì)劃,特對(duì)某產(chǎn)品做了市場(chǎng)調(diào)查:先銷(xiāo)售該產(chǎn)品50天,統(tǒng)計(jì)發(fā)現(xiàn)每天的銷(xiāo)售量分布在內(nèi),且銷(xiāo)售量的分布頻率

.

(Ⅰ)求的值并估計(jì)銷(xiāo)售量的平均數(shù);

(Ⅱ)若銷(xiāo)售量大于等于70,則稱(chēng)該日暢銷(xiāo),其余為滯銷(xiāo).在暢銷(xiāo)日中用分層抽樣的方法隨機(jī)抽取8天,再?gòu)倪@8天中隨機(jī)抽取3天進(jìn)行統(tǒng)計(jì),設(shè)這3天來(lái)自個(gè)組,求隨機(jī)變量的分布列及數(shù)學(xué)期望(將頻率視為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性.

(Ⅱ)試判斷曲線是否存在公共點(diǎn)并且在公共點(diǎn)處有公切線.若存在,求出公切線的方程;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+(ya)2=4,點(diǎn)A(1,0).

(1)當(dāng)過(guò)點(diǎn)A的圓C的切線存在時(shí),求實(shí)數(shù)a的取值范圍;

(2)設(shè)AM、AN為圓C的兩條切線,M、N為切點(diǎn),當(dāng)MN時(shí),求MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 是等邊三角形, 的中點(diǎn),四邊形為直角梯形, .

1)求證:平面平面;

2)求四棱錐的體積;

3)在棱上是否存在點(diǎn),使得平面?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案