【題目】在如圖所示的幾何體中,四邊形為平行四邊形, 平面,且是的中點(diǎn).
(1)求證: 平面;
(2)求二面角的余弦值的大小.
【答案】(1)見解析(2)
【解析】試題分析:(1)取AD的中點(diǎn)N,連接MN、NF.由三角形中位線定理,結(jié)合已知條件,證出四邊形MNFE為平行四邊形,從而得到EM∥FN,結(jié)合線面平行的判定定理,證出EM∥平面ADF;(2)求出平面ADF、平面BDF的一個法向量,利用向量的夾角公式,可求二面角的大小.
解析:
(1)解法一:取的中點(diǎn),連接.
在中, 是的中點(diǎn), 是的中點(diǎn),
所以,又因?yàn)?/span>,
所以且.
所以四邊形為平行四邊形,所以,
又因?yàn)?/span>平面平面,故平面.
解法二:因?yàn)?/span>平面,
故以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
由已知可得,
設(shè)平面的一個法向量是.
由得
令,則.
又因?yàn)?/span>,所以,又平面,
故平面.
(2)由(1)可知平面的一個法向量是.
易得平面的一個法向量是
所以,又二面角為銳角,
故二面角的余弦值大小為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 是等邊三角形, 為的中點(diǎn),四邊形為直角梯形, .
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)在棱上是否存在點(diǎn),使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為函數(shù)的導(dǎo)函數(shù),且.
(1)判斷函數(shù)的單調(diào)性;
(2)若,討論函數(shù)零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“若,則”的逆否命題為“若,則”
B. 若命題 “, ”,則命題的否定為“, ”
C. “”是“”的充分不必要條件
D. “”是“直線與直線互為垂直”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),一個焦點(diǎn)坐標(biāo)是,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過作直線交橢圓于兩點(diǎn), 是橢圓的另一個焦點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): , , ;
回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)且,不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)時,求在上的單調(diào)區(qū)間;
(2)且, 均恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線: (為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com