【題目】如圖所示,正三棱柱的所有棱長都為,為中點(diǎn).
(1)求證:⊥平面;
(2)求銳二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)取中點(diǎn),連結(jié),得,所以平面,取中點(diǎn),以為原點(diǎn),,,的方向?yàn)?/span>軸的正方向建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出,,,利用向量證得,,從而得到⊥平面;(2)先求出平面的法向量,由(1)知為平面的法向量,計(jì)算,然后可求出答案.
(1)取中點(diǎn),連結(jié).
∵為正三角形,∴.
∵在正三棱柱中,平面平面,
∴平面.
取中點(diǎn),以為原點(diǎn),,,的方向?yàn)?/span>軸的正方向建立空間直角坐標(biāo)系,如圖所示,
則,,,,,
∴,,.
∴,,
∴,,且
∴平面.
(2)設(shè)平面的法向量為.,.
∴,即,解得,
令得為平面的一個(gè)法向量.
由(1)知平面,為平面的法向量,
∴.
∴銳二面角的大小的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和點(diǎn).
(Ⅰ)求線段的垂直平分線的直線方程;
(Ⅱ)若直線過點(diǎn),且,到直線的距離相等.求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公共站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時(shí)租賃模式,是共享經(jīng)濟(jì)的一種新形態(tài).某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數(shù)量之間的關(guān)系”進(jìn)行了調(diào)查,并將相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
根據(jù)以上數(shù)據(jù),研究人員設(shè)計(jì)了兩種不同的回歸分析模型,得到兩個(gè)擬合函數(shù):
模型甲: ,模型乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1元)(備注: , 稱為相應(yīng)于點(diǎn)的殘差);
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | 2.4 | 2 | 1.8 | 1.4 | |
殘差 | 0 | 0 | 0.1 | 0.1 | ||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)這家企業(yè)在城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應(yīng)求,于是該企業(yè)決定增加單車投放量.根據(jù)市場(chǎng)調(diào)查,市場(chǎng)投放量達(dá)到1萬輛時(shí),平均每輛單車一天能收入7.2元;市場(chǎng)投放量達(dá)到1.2萬輛時(shí),平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請(qǐng)說明理由.(利潤=收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個(gè)單位職工與身體狀態(tài)有關(guān)的某項(xiàng)指標(biāo),要從中抽取100名職工作為樣本,應(yīng)該怎樣抽取?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對(duì)某課題進(jìn)行討論研究,用分層抽樣的方法從三所高校A、B、C的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | x | 1 |
B | 36 | y |
C | 54 | 3 |
(1)求x、y;
(2)若從高校B相關(guān)的人中選2人作專題發(fā)言,應(yīng)采用什么抽樣法,請(qǐng)寫出合理的抽樣過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了人,回答問題“某省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表
組號(hào) | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,左焦點(diǎn)為,右頂點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),若直線垂直于軸時(shí),有.
(1)求橢圓的方程;
(2)設(shè)直線: 上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿足:,數(shù)列滿足:對(duì)任意有.
(1)求數(shù)列與數(shù)列的通項(xiàng)公式;
(2)記,數(shù)列的前項(xiàng)和為,證明:當(dāng)時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com