【題目】設(shè)橢圓的離心率,左焦點(diǎn)為,右頂點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),若直線垂直于軸時,有.

(1)求橢圓的方程;

(2)設(shè)直線 上兩點(diǎn), 關(guān)于軸對稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)由離心率可得的關(guān)系,再由,結(jié)合隱含條件,求得的值,即可得到橢圓的方程;

(2)設(shè)直線的方程為,與直線的方程聯(lián)立,可得點(diǎn)的坐標(biāo),進(jìn)一步得到的坐標(biāo),聯(lián)立直線與橢圓的方程,求得的坐標(biāo),則所在的直線方程可求,取,求得的坐標(biāo),得到,結(jié)合的面積為,即可求解實(shí)數(shù)的值,得到直線方程.

試題解析:

(1)設(shè)因?yàn)?/span>所以有,又由,

,得,因此橢圓的方程為: .

(2)設(shè)直線的方程為,與直線的方程聯(lián)立,可得點(diǎn),故.將聯(lián)立,消去,整理, 解得,或.由點(diǎn)異于點(diǎn),

可得點(diǎn).由,可得直線的方程為

,令

解得,故. 所以.

又因?yàn)?/span>的面積為,故,

整理得,解得,所以.

所以,直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市為調(diào)查會員某年度上半年的消費(fèi)情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機(jī)抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的名會員消費(fèi)金額(單位:萬元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費(fèi)金額分成組,制作成如下的頻率分布直方圖.

(1)求該名會員上半年消費(fèi)金額的平均值與中位數(shù);(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值)

(2)若再從這名會員中選出一名會員參加幸運(yùn)大抽獎,幸運(yùn)大抽獎方案如下:會員最多有兩次抽獎機(jī)會,每次抽獎的中獎概率均為,第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋擲一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎.規(guī)定:拋出的硬幣,若反面朝上,則會員獲得元獎金,不進(jìn)行第二次抽獎;若正面朝上,會員需進(jìn)行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金元,如果未中獎,則所獲得的獎金為元.若參加幸運(yùn)大抽獎的會員所獲獎金(單位:元)用表示,求的分布列與期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三棱柱的所有棱長都為,中點(diǎn).

(1)求證:⊥平面

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DE分別為BC,AC的中點(diǎn),AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列中,.

1)求證:存在的一次函數(shù),使得成公比為2的等比數(shù)列;

2)求的通項(xiàng)公式;

3)令,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前五年平均每臺設(shè)備每年的維護(hù)費(fèi)用大致如表:

年份

1

2

3

4

5

維護(hù)費(fèi)萬元

y關(guān)于t的線性回歸方程;

若該設(shè)備的價格是每臺5萬元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰更有道理?并說明理由.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖橢圓的離心率為, 其左頂點(diǎn)在圓.

1)求橢圓的方程;

2)直線與橢圓的另一個交點(diǎn)為,與圓的另一個交點(diǎn)為.是否存在直線,使得? 若存在,求出直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

2)是否存在實(shí)數(shù),使得上的值域恰好是?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求分?jǐn)?shù)在內(nèi)的頻率,補(bǔ)全這個頻率分布直方圖,并據(jù)此估計本次考試的平均分;

(2)用分層抽樣的方法,在分?jǐn)?shù)段為的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分?jǐn)?shù)段內(nèi)的概率

查看答案和解析>>

同步練習(xí)冊答案