分析 (1)由奇函數(shù)的定義可得f(-x)=-f(x),進(jìn)而可得g(x)g(-x)=1,解得p=2,再討論a>1,0<a<1,結(jié)合復(fù)合函數(shù)的單調(diào)性可得f(x)的單調(diào)性;
(2)由題設(shè)x∈(r,a-3)時(shí),f(x)的值的范圍恰為(1,+∞),可根據(jù)函數(shù)的單調(diào)性確定出兩個(gè)參數(shù)a及r的方程,解方程得出兩個(gè)參數(shù)的值;
(3)實(shí)際上是根的存在性問題,可以通過等價(jià)轉(zhuǎn)化求解,結(jié)合換元法和二次函數(shù)的值域求法,即可得到m的值.
解答 解:(1)函數(shù)g(x)=$\frac{p+x}{x-2}$,且函數(shù)f(x)=logag(x)(a>0,a≠1)奇函數(shù)而非偶函數(shù),
可得f(-x)=-f(x),
即loga$\frac{p-x}{-x-2}$=-loga$\frac{p+x}{x-2}$,
可得$\frac{p+x}{x-2}$•$\frac{p-x}{-x-2}$=1,
即p2-x2=4-x2,
即p2=4,解得p=2(-2舍去),
即有f(x)=loga$\frac{x+2}{x-2}$,
當(dāng)a>1時(shí),f(x)在(2,+∞),(-∞,-2)遞減;
當(dāng)0<a<1時(shí),f(x)在(2,+∞),(-∞,-2)遞增.
(2)由(1)得f(x)=loga$\frac{x+2}{x-2}$,
函數(shù)f(x)的定義域?yàn)椋?∞,-2)∪(2,+∞)
又$\frac{x+2}{x-2}$≠1,得f(x)∈(-∞,0)∪(0,+∞),
令f(x)=1,則loga$\frac{x+2}{x-2}$=1,解得x=$\frac{2+2a}{a-1}$.
所以:f($\frac{2+2a}{a-1}$)=1,
當(dāng)a>1時(shí),$\frac{2+2a}{a-1}$>2,此時(shí)f(x)在(2,+∞)上的單調(diào)減函數(shù).
所以:當(dāng)x∈(2,$\frac{2+2a}{a-1}$)時(shí),得f(x)∈1,+∞);
由題意:r=2,那么a-3=$\frac{2+2a}{a-1}$,解得:a=3+2$\sqrt{2}$.
所以:當(dāng)x∈(r,a-3),f(x)的取值范圍恰為(1,+∞)時(shí),a和r的值分別為3+2$\sqrt{2}$和2;
(3)假設(shè)h(x)=$\sqrt{(x-2)g(x)}$-m(x+2)-2即
h(x)=$\sqrt{x+2}$-m(x+2)-2,存在實(shí)數(shù)m使得函數(shù)y=h(x)有零點(diǎn).
由題意可知,方程$\sqrt{2+x}$=m(x+2)+2在{x|x≥-2且x≠2}中有實(shí)數(shù)解,
令$\sqrt{2+x}$=t,則t≥0且t≠2,
問題轉(zhuǎn)化為關(guān)于t的方程mt2-t+2=0①,
有非負(fù)且不等于2的實(shí)數(shù)根.
若t=0,則①為2=0,顯然不成立,
故t≠0,方程①可變形為m=-2($\frac{1}{t}$)2+$\frac{1}{t}$,
問題進(jìn)一步轉(zhuǎn)化為求關(guān)于t的函數(shù)(t≥0且t≠2)的值域,
因?yàn)閠≥0且t≠2,所以$\frac{1}{t}$>0且$\frac{1}{t}$≠$\frac{1}{2}$,
所以m=-2($\frac{1}{t}$)2+$\frac{1}{t}$∈(-∞,0)∪(0,$\frac{1}{8}$],
所以實(shí)數(shù)m的取值范圍是(-∞,0)∪(0,$\frac{1}{8}$].
點(diǎn)評(píng) 本題主要考查了函數(shù)的單調(diào)性以及根的存在性問題,比較復(fù)雜,但解題方法均為基本方法,要求掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x≤0,x-lnx≤0 | B. | ?x>0,x-lnx≤0 | C. | ?x≤0,x-lnx≤0 | D. | ?x>0,x-ln≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | ±$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 15 | C. | 17 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 1 | 2 | 3 |
f(x) | 1 | 3 | 1 |
x | 1 | 2 | 3 |
g(x) | 3 | 2 | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com