分析 (1)由OA⊥OO1,OB⊥OO1,知∠AOB是所折成的直二面角的平面角,從而OA⊥OB,進(jìn)而推導(dǎo)出OC⊥BO1,由此能證明AC⊥BO1.
(2)推導(dǎo)出BO1⊥平面AOC,設(shè)OC∩O1B=E,過點(diǎn)E作EF⊥AC于F,連結(jié)O1F,則∠O1FE是二面角O-AC-O1的平面角,由此能求出二面角O-AC-O1的余弦值.
解答 證明:(1)由題設(shè)知OA⊥OO1,OB⊥OO1,
所以∠AOB是所折成的直二面角的平面角,
即OA⊥OB
從而AO⊥平面OBCO1,
OC是AC在面OBCO1內(nèi)的射影
因?yàn)閠an∠OO1A=$\frac{OB}{O{O}_{1}}$=$\sqrt{3}$,tan∠O1OC=$\frac{{O}_{1}C}{O{O}_{1}}$=$\frac{\sqrt{3}}{3}$,
所以∠OO1B=60°,∠O1OC=30°,
從而OC⊥BO1
由三垂線定理得AC⊥BO1.
解:(2)由(1)AC⊥BO1,OC⊥BO1,知BO1⊥平面AOC
設(shè)OC∩O1B=E,過點(diǎn)E作EF⊥AC于F,連結(jié)O1F(如圖),
則EF是O1F在平面AOC 內(nèi)的射影,
由三垂線定理得O1F⊥AC
所以∠O1FE是二面角O-AC-O1的平面角
由題設(shè)知OA=3,OO1=$\sqrt{3}$,O1C=1,
所以${O}_{1}A=\sqrt{O{A}^{2}+O{{O}_{1}}^{2}}$=2$\sqrt{3}$,AC=$\sqrt{{O}_{1}{A}^{2}+{O}_{1}{C}^{2}}$=$\sqrt{13}$,
從而${O}_{1}F=\frac{{O}_{1}A•{O}_{1}C}{AC}$=$\frac{2\sqrt{3}}{\sqrt{13}}$,
又O1E=OO1•sin30°=$\frac{\sqrt{3}}{2}$,
所以sin∠O1FE=$\frac{{O}_{1}E}{{O}_{1}F}$=$\frac{\sqrt{13}}{4}$,
cos∠O1FE=$\sqrt{1-(\frac{\sqrt{13}}{4})^{2}}$=$\frac{\sqrt{3}}{4}$,
∴二面角O-AC-O1的余弦值為$\frac{\sqrt{3}}{4}$.
點(diǎn)評 本題考查線線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∨r | B. | p∧(¬q) | C. | (¬q)∧(¬r) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 8 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男 | 女 | 總計(jì) | |
看營養(yǎng)說明 | 50 | y | 80 |
不看營養(yǎng)說明 | x | 20 | 30 |
總計(jì) | 60 | 50 | z |
p(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com