【題目】已知函數(shù) , .
(1)求函數(shù) 的最小正周期;
(2)若 ,且 ,求 的值.
【答案】(1) (2)
【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進而得到周期;(2)由,得到, ,由配湊角公式得到,代入值得到函數(shù)值.
解析:
(1)由題意
=
所以 的最小正周期為 ;
(2)由
又由 得 ,所以
故 ,
故
【題型】解答題
【結(jié)束】
20
【題目】為響應十九大報告提出的實施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場品銷售收入為 萬元(前 年的純利潤綜合=前 年的 總收入-前 年的總支出-投資額 萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤達到最大?并求出年平均純利潤的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABCD是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE,點M是棱AD的中點
(1)求異面直線ME與AB所成角的大小;
(Ⅱ)證明:平面AED⊥平面ACD
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C的極坐標方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設點Q(1,2),直線l與曲線C交于A,B兩點,求|QA||QB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若關(guān)于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且僅有兩個整數(shù)解,則實數(shù)a的取值范圍為( )
A.(﹣ , ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)業(yè)余足球運動員共有15000人,其中男運動員9000人,女運動員6000人,為調(diào)查該地區(qū)業(yè)余足球運動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務足球運動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務運動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1)應收集多少位女運動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認為“熱愛足球與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題:
①若,則“”是“”的充分不必要條件;
②若,則“”是“且”的充要條件.判讀正確的是( )
A. ①②都是真命題 B. ①是真命題,②是假命題
C. ①是假命題,②是真命題 D. ①②都是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當時, .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)求函數(shù)的對稱軸方程;
(3)當時,方程有兩個不同的實根,求m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com