【題目】如圖,在正方體中, 分別是線段的中點(diǎn).
(1)求異面直線與所成角的大。
(2)求直線與平面所成角的大。
【答案】(1)(2)
【解析】試題分析:方法一:以為原點(diǎn),直線, , 為,,軸,建立空間直角坐標(biāo)系,求出直線與的方向向量,可求兩異面直線所成角,需要注意異面直線所成角范圍是。線面角只需求出直線的方向向量與平面的法向量,利用公式可求解,注意線面角范圍。方法二:異面直線所成角另一種方法就是通過平移,把兩異面直平移到同一平面。作于,聯(lián)結(jié),有∥,故異面直線與所成的角就是(或其補(bǔ)角).平面∥平面,故直線與平面所成角的大小就是直線與平面所成角.注意到平面,即平面,所以直線與平面所成角的大小即為.
試題解析:(1)方法一:設(shè)正方體棱長為,以為原點(diǎn),直線, , 為,,軸,建立空間直角坐標(biāo)系,則, , , ,故, , , ,
設(shè)異面直線與所成角的大小為,向量與所成角為,則 ,注意到,故,即異面直線與所成角的大小為.
(2)由(1)可知,平面的一個(gè)法向量是,設(shè)直線與平面所成角的大小是,向量與所成角為,則
又, ,即直線與平面所成角的大小為
方法二:設(shè)正方體棱長為.
(1)在面內(nèi),作于,聯(lián)結(jié).因?yàn)檎襟w
,所以∥;在面內(nèi),有∥,故異面直線與所成的角就是(或其補(bǔ)角).
由已知及作圖可知, 為的中點(diǎn),于是,在中,易得,
,故, ,
又,所以,從而異面直線與所成角的大小為.
(2)因?yàn)檎襟w,所以平面∥平面,故直線與平面所成角的大小就是直線與平面所成角.注意到平面,即平面,所以直線與平面所成角的大小即為.
在中,易得,故 ,
又,故,即直線與平面所成角的大小為.
點(diǎn)睛:對(duì)于長方體中求線線角,線面角的問題,規(guī)則圖形用空間向量更容易解決。線線角的普通方法常用平移到同一個(gè)平面。線面角也是通過平移形成直線與平面相交,再在三角形中計(jì)算。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于某種商品開始收稅,使其定價(jià)比原定價(jià)上漲x成(即上漲率為 ),漲價(jià)后商品賣出的個(gè)數(shù)減少bx成,稅率是新價(jià)的a成,這里a,b均為常數(shù),且a<10,用A表示過去定價(jià),B表示過去賣出的個(gè)數(shù).
(1)設(shè)售貨款扣除稅款后,剩余y元,求y關(guān)于x的函數(shù)解析式;
(2)要使y最大,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)處的切線為,直線與軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點(diǎn)為P,則當(dāng)△PF1F2的面積等于a2時(shí),雙曲線的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 =1所表示的圖形是焦點(diǎn)在y軸上的雙曲線,命題q:復(fù)數(shù)z=(m﹣3)+(m﹣1)i對(duì)應(yīng)的點(diǎn)在第二象限,又p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣3x+(a﹣1)lnx,g(x)=ax,h(x)=f(x)﹣g(x)+3x.
(1)當(dāng)a=5時(shí),求函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的最小值;
(2)當(dāng)a=3時(shí),求函數(shù)h(x)的單調(diào)區(qū)間及極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,“厲行節(jié)約,反對(duì)浪費(fèi)”之風(fēng)悄然吹開,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動(dòng),得到如下的列聯(lián)表:
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調(diào)區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時(shí)x的值;
(3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是偶函數(shù)f(x)(x∈(﹣∞,0)∪(0,+∞)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com