函數(shù)y=cosx,x∈[0,2π]的圖象和直線y=1圍成一個封閉的平面圖形,這個封閉圖形的面積是
 
考點:余弦函數(shù)的圖象
專題:導數(shù)的綜合應用,三角函數(shù)的求值
分析:要求曲線圍成的封閉圖象的面積,直接利用定積分求解即可.
解答: 解:y=cosx,x∈[0,2π]的圖象和直線y=1圍成一個封閉的平面圖形,
所以S=
0
(1-cosx)dx
=x
|
0
-sin
|
0
=2π,
故答案為:2π.
點評:本題考查的知識要點:利用定積分求曲線的面積.熟練掌握定積分變換關系式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的體積為V,則三棱錐A1-ABC1的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一個倉庫里堆積著正方體的貨箱若干,要搬運這些箱子很困難,可是倉庫管理員要清點一下箱子的數(shù)量,于是就想出一個辦法:將這堆貨物的三視圖畫了出來,你能根據(jù)三視圖,幫他清點一下箱子的數(shù)量嗎?這些正方體貨箱的個數(shù)為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以雙曲線
x2
4
-
y2
5
=1的中心為頂點,求以該雙曲線的右焦點為焦點的拋物線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體三視圖如下圖所示,則該幾何體的表面積為(  )
A、16-πB、16+π
C、16-2πD、16+2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,若y-mx≤2恒成立,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C分別是邊a,b,c所對應的角,且cosA=
4
5

(Ⅰ)求sin2
A+B
2
+cos2A的值;
(Ⅱ)若a=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(
π
2
-ωx)(ω>0)任意兩個零點之間的最小距離為
π
2

(Ⅰ)若f(α)=
1
2
,α∈[-π,π],求α的取值集合;
(Ⅱ)求函數(shù)y=f(x)-cos(ωx+
π
3
)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x2-2x,x≥0
x2+ax,x<0
為偶函數(shù),則y=loga(x2-4x-5)的單調(diào)遞增區(qū)間為( 。
A、(-∞,-1)
B、(-∞,2)
C、(2,+∞)
D、(5,+∞)

查看答案和解析>>

同步練習冊答案