【題目】為平面向量,若存在不全為零的實數(shù)λ,μ使得λμ0,則稱、線性相關,下面的命題中,、均為已知平面M上的向量.

2,則線性相關;

、為非零向量,且,則線性相關;

、線性相關,、線性相關,則線性相關;

向量、線性相關的充要條件是共線.

上述命題中正確的是 (寫出所有正確命題的編號)

【答案】①④

【解析】

利用 線性相關 等價于 是共線向量,故正確,不正確,正確.通過舉反例可得不正確.

解:若、線性相關,假設λ0,則,故 是共線向量.

反之,若 是共線向量,則 ,即λμ0,故 線性相關.

線性相關 等價于 是共線向量.

2 ,則 2 0,故 線性相關,故正確.

為非零向量,,則 不是共線向量,不能推出 線性相關,故不正確.

線性相關,則 線性相關,不能推出若 線性相關,例如當 時,

可以是任意的兩個向量.故不正確.

向量 線性相關的充要條件是 是共線向量,故正確.

故答案為 ①④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了推行“智慧課堂”教學,某老師分別用傳統(tǒng)教學和“智慧課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,期屮考試后,分別從兩個班級屮各隨機抽取20名學生的成績進行統(tǒng)計,結果如下表:記成績不低于70分者為“成績優(yōu)良”.

分數(shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學方式是否有關”?

甲班

乙班

總計

成績優(yōu)良

p>成績不優(yōu)良

總計

附: .

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,不正確的是(

A.中,若,則

B.在銳角中,不等式恒成立

C.中,若,則必是等邊三角形

D.中,若,則必是等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在,使得成立,則稱的不動點,已知函數(shù)

1)當,時,求函數(shù)的不動點;

2)若對任意實數(shù),函數(shù)恒有不動點,求的取值范圍;

3)在(2)條件下,若圖象上的兩點的橫坐標是函數(shù)的不動點,且的中點在直線上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點,N是PC的中點.

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓 的離心率為,直線ly=2上的點和橢圓上的點的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點為A,點B,C上的不同于A的兩點,且點B,C關于原點對稱,直線AB,AC分別交直線l于點E,F.記直線的斜率分別為,

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距640米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經(jīng)預測,一個橋墩的工程費用為256萬元,距離為米的相鄰兩墩之間的橋面工程費用為萬元.假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,設需要新建個橋墩,記余下工程的費用為萬元.

(1)試寫出關于的函數(shù)關系式;(注意:

(2)需新建多少個橋墩才能使最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中, , 的中點, 的中點.將沿折起到,使得平面平面(如圖).

圖1 圖2

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=,an+1=3an-1(n∈N*).

(1)若數(shù)列{bn}滿足bn=an-,求證:{bn}是等比數(shù)列;

(2)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

同步練習冊答案