利用單調(diào)函數(shù)的定義證明:函數(shù)f(x)=x+
3
x
在區(qū)間(0,
3
)
上是減函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè) 0<x1<x2
3
,化簡(jiǎn)f(x1)-f(x2) 為
(x1-x2)(x1x2-3)
x1x2
,判斷它的符號(hào)大于零,再根據(jù)減函數(shù)的定義得出結(jié)論.
解答: 證明:設(shè) 0<x1<x2
3
,則 f(x1)-f(x2)=(x1+
3
x1
)-(x2+
3
x2
)=(x1-x2 )+3(
1
x1
-
1
x2

=
(x1-x2)(x1x2-3)
x1x2
,
由0<x1<x2
3
,可得 0<x1x2<3,x1-x2<0. 
(x1-x2)(x1x2-3)
x1x2
>0,即 f(x1)>f(x2),
由單調(diào)函數(shù)的定義可知,函數(shù)函數(shù)f(x)=x+
3
x
在區(qū)間(0,
3
)上是減函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的判斷和證明,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x+b|.
(Ⅰ)若不等式f(x)≤3的解集是{x|-1≤x≤2},求實(shí)數(shù)b的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x+3)+f(x+1)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是△ABC邊BC上任意一點(diǎn),且2
AN
=
NM
,若
AN
AB
AC
,則λ+μ的值為(  )
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的函數(shù),滿足f(x)+f(-x)=0,f(x-1)=f(x+1),當(dāng)x∈[0,1)時(shí),f(x)=3x-1,則f(log 
1
3
12)的值為( 。
A、-
11
12
B、-
1
4
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐表面積為πa,其側(cè)面展開圖是一個(gè)半圓,則圓錐底面半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的三個(gè)頂點(diǎn)A,B,C分別在函數(shù)y=log 
2
2
x,y=x 
1
2
,y=(
2
2
x的圖象上,且矩形的邊分別平行于兩坐標(biāo)軸,若點(diǎn)A的縱坐標(biāo)為2,則的D的坐標(biāo)為( 。
A、(
1
2
,
1
4
B、(
1
2
,
2
2
C、(
1
4
1
16
D、(
1
4
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)=f(2-x),當(dāng)x∈[-1,0]時(shí),f(x)=1-(
1
2
)x
,則f(2014)+f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

程序框圖(即算法流程圖)如圖所示,其輸出結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an=2an-1+1(n≥2)且a1=1,bn=log2(a2n+1+1),cn=
1
b
2
n
-1
.求證:
(Ⅰ)數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}的前n項(xiàng)和Sn
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案