已知數(shù)列的前項和為,且滿足 (),,設(shè),
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實數(shù)的最小值;
(3)當時,給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項和為,若可以寫成 ()的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

(1)根據(jù)等比數(shù)列的定義,相鄰兩項的比值為定值。
(2)-9
(3)①當為偶數(shù)時,,存在正整 數(shù),使得,,,,所以,
相應(yīng)的,即有,為“指數(shù)型和”;        
②當為奇數(shù)時,,由于個奇數(shù)之和,仍為奇數(shù),又為正偶數(shù),所以不成立,此時沒有“指數(shù)型和

解析試題分析:解:(1),,,當時,
=2,所以為等比數(shù)列. ,
(2) 由(1)可得   
;  ,   ,
所以,且.所以的最小值為-9
(3)由(1)當時 ,
時,,
所以對正整數(shù)都有.                   
,,(),只能是不小于3的奇數(shù).
①當為偶數(shù)時,,
因為都是大于1的正整數(shù),
所以存在正整 數(shù),使得,
,,所以,
相應(yīng)的,即有,為“指數(shù)型和”;        
②當為奇數(shù)時,,由于個奇數(shù)之和,
仍為奇數(shù),又為正偶數(shù),所以不成立,此時沒有“指數(shù)型和”
考點:數(shù)列和函數(shù)的 綜合運用
點評:解決的關(guān)鍵是能利用數(shù)列的定義和數(shù)列的單調(diào)性來求解參數(shù)的值,同事能借助于新定義來求解,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項,公差.且分別是等比數(shù)列
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)均有 成立,求  的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足.
(Ⅰ)求;
(Ⅱ)數(shù)列滿足 , 為數(shù)列的前項和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,,,數(shù)列中,,
(Ⅰ)求數(shù)列的通項公式,寫出它的前項和;
(Ⅱ)求數(shù)列的通項公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列
(1)觀察規(guī)律,寫出數(shù)列的通項公式,它是個什么數(shù)列?
(2)若,設(shè) ,求
(3)設(shè),為數(shù)列的前項和,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是首項為19,公差為-2的等差數(shù)列,的前n項和。
(Ⅰ)求通項;
(Ⅱ)設(shè)是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,前項的和為,對任意的,,總成等差數(shù)列.
(1)求的值;
(2)求通項;
(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1) 在等差數(shù)列中,已知,求;
(2)在等比數(shù)列中,已知,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)  
已知數(shù)列的各項排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個數(shù)構(gòu)成等差數(shù)列,的前n項和,且

( I )若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;
(Ⅱ)設(shè),求

查看答案和解析>>

同步練習冊答案