6.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場比賽得分的莖葉圖,則甲、乙兩人這幾場比賽得分的中位數(shù)之和是( 。
A.65B.64C.63D.62

分析 分別將甲、乙兩名運(yùn)動(dòng)員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可.

解答 解:因?yàn)榧、乙兩名籃球運(yùn)動(dòng)員各參賽9場,故中位數(shù)是第5個(gè)數(shù).
甲的得分按小到大排序后為:13,15,23,26,28,34,37,39,41,
所以,中位數(shù)為28
乙的得分按小到大排序后為:24,25,32,33,36,37,41,42,45,
所以,中位數(shù)為36
所以,中位數(shù)之和為28+36=64,
故選B.

點(diǎn)評 考查統(tǒng)計(jì)知識(shí),莖葉圖中找中位數(shù).將莖葉圖數(shù)據(jù)重新排序,再取中間位置的數(shù)是解決問題的思路.找對中位數(shù)是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為拋物線C2:y2=2px的焦點(diǎn)F,且點(diǎn)F到雙曲線的一條漸近線的距離為$\sqrt{3}$,若雙曲線C1與拋物線C2在第一象限內(nèi)的交點(diǎn)為P(x0,2$\sqrt{6}$),則該雙曲線的離心率e為( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,a,b,c分別是A,B,C的對邊,且滿足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分線與BC相交于D點(diǎn),AD=AC,BD=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1(-c,0)的直線交橢圓E于A,B兩點(diǎn),若|AF1|=3|F1B|,且AB⊥AF2,則橢圓E的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=(m2-m-1)x${\;}^{{m}^{2}+m-3}$是冪函數(shù),且當(dāng)x∈(0,+∞)時(shí)f(x)是減函數(shù),則實(shí)數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)y=ex+ax有大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.a>-1B.$a>-\frac{1}{e}$C.a<-1D.$a<-\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\frac{1}{{\sqrt{{{log}_{0.6}}(4x-3)}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.$(\frac{3}{4},+∞)$B.$(\frac{3}{4},1)$C.(1+∞)D.$(\frac{3}{4},1)∪(1+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.經(jīng)過兩點(diǎn)(-1,2),(-3,-2)的直線的方程是( 。
A.x-2y+5=0B.x-2y-5=0C.2x-y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一點(diǎn),且CE∥平面PAB,則點(diǎn)E到平面ABCD的距離為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊答案