1.函數(shù)f(x)=(m2-m-1)x${\;}^{{m}^{2}+m-3}$是冪函數(shù),且當(dāng)x∈(0,+∞)時(shí)f(x)是減函數(shù),則實(shí)數(shù)m=-1.

分析 根據(jù)冪函數(shù)的定義,令m2-m-1=1,求出m的值,再判斷m是否滿足冪函數(shù)當(dāng)x∈(0,+∞)時(shí)為減函數(shù)即可.

解答 解:∵冪函數(shù)f(x)=(m2-m-1)xm2+m-3
∴m2-m-1=1,
解得m=2,或m=-1;
又x∈(0,+∞)時(shí),f(x)為減函數(shù),
∴當(dāng)m=2時(shí),m2+m-3=3,冪函數(shù)為y=x3,不滿足題意;
當(dāng)m=-1時(shí),m2+m-3=0,冪函數(shù)為y=x-3,滿足題意;
綜上,m=-1,
故答案為:-1

點(diǎn)評(píng) 本題考查了冪函數(shù)的定義與性質(zhì)的應(yīng)用問題,解題的關(guān)鍵是求出符合題意的m值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=log2x,y∈Z},B={1,2,3,4,5,6,7,8,9},則A∩B=( 。
A.{1,2,3,4}B.{2,4,6,8}C.{1,2,4,8}D.{2,4,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x∈N|x2-2x-3<0},B={x|lgx>0},則A∩B=( 。
A.{0,1}B.{2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:對(duì)?x∈R,均有ax2+ax+1>0恒成立;命題q:雙曲線的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{1-a}$$+\frac{{y}^{2}}{a-3}$=1,若p∧q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知?jiǎng)訄AP過點(diǎn)F(1,0)且和直線l:x=-1相切.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)已知點(diǎn)M(-1,0),若過點(diǎn)F的直線與軌跡E交于A,B兩點(diǎn),求證:直線MA,MB的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖,則甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)之和是( 。
A.65B.64C.63D.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>0時(shí),$xlnx>\frac{x}{e^x}-\frac{2}{e}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-\frac{1}{2},(x<1)}\\{lnx,x≥1}\end{array}\right.$,若f(f(a))=lnf(a),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,e)B.[e,+∞)C.[$\frac{3}{2e}$,3]D.(2,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在(1,+∞)上的函數(shù)f(x)滿足下列兩個(gè)條件:(1)對(duì)任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時(shí),f(x)=-x2+2x,記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.[1,2)B.[$\frac{4}{3}$,2)C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案