分析 過點C作CF⊥AD于F,過F作EF⊥AD交PD于E,則EF⊥平面ABCD,由此能求出結(jié)果.
解答 解:過點C作CF⊥AD于F,
過F作EF⊥AD交PD于E,
則EF⊥平面ABCD,
∵PA⊥底面ABCD,∴EF∥PA,
∵BA⊥AD,CF⊥AD,∴AB∥FC,
∵PA∩AB=A,EF∩FC=F,PA,AB?平面PAB,EF,F(xiàn)C?平面EFC,
∴平面PAB∥平面EFC,
∵CE?平面EFC,∴CE∥平面PAB,
∴EF=$\frac{3}{4}$PA=$\frac{9}{4}$.
故答案為:$\frac{9}{4}$.
點評 本題考查點E到平面ABCD的距離的求法,考查線面平行的判定,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 65 | B. | 64 | C. | 63 | D. | 62 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\underset{lim}{x→∞}$$\frac{sinx}{x}$=1 | B. | $\underset{lim}{x→0}$$\frac{sinx}{x}$=0 | C. | $\underset{lim}{x→0}$xsin$\frac{1}{x}$=1 | D. | $\underset{lim}{x→∞}$xsin$\frac{1}{x}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2) | B. | [$\frac{4}{3}$,2) | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1] | B. | (-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1) | C. | (-∞,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦點在x軸上的橢圓 | B. | 焦點在y軸上的橢圓 | ||
C. | 焦點在x軸上的雙曲線 | D. | 焦點在y軸上的雙曲線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com