【題目】019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數(shù)據(jù)進行流行病學統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù):

1)請將列聯(lián)表填寫完整,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為有武漢旅行史與有確診病例接觸史有關(guān)系?

有接觸史

無接觸史

總計

有武漢旅行史

4

無武漢旅行史

10

總計

25

45

2)已知在無武漢旅行史的10名患者中,有2名無癥狀感染者.現(xiàn)在從無武漢旅行史的10名患者中,選出2名進行病例研究,記選出無癥狀感染者的人數(shù)為,求的分布列以及數(shù)學期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

【答案】1)填表見解析;能在犯錯誤的概率不超過0.01的前提下,認為有武漢旅行史與有確診病例接觸史有關(guān)系(2)分布列見解析,期望為

【解析】

1)根據(jù)表格中數(shù)據(jù)可得列聯(lián)表,根據(jù)公式計算可得觀測值,根據(jù)觀測值,結(jié)合臨界值表可得答案;

2)根據(jù)題意,的值可能為01,2,根據(jù)古典概型的概率公式可得的各個取值的概率,從而可得分布列,根據(jù)數(shù)學期望的公式計算可得數(shù)學期望.

1)列聯(lián)表補充如下:

有接觸史

無接觸史

總計

有武漢旅行史

15

4

19

無武漢旅行史

10

16

26

總計

25

20

45

隨機變量的觀測值為

所以能在犯錯誤的概率不超過0.01的前提下,認為有武漢旅行史與有確診病例接觸史有關(guān)系.

2)根據(jù)題意,的值可能為0,12.

,,

的分布列如下:

的數(shù)學期望:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,∠BAC=120°,AC=AB=2,AA1=3.

(1)求三棱柱ABC-A1B1C1的體積;

(2)若M是棱BC的一個靠近點C的三等分點,求二面角A-A1M-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖1直角梯形,,,的中點,沿將梯形折起(如圖2),使平面平面.

1)證明平面;

2)在線段上是否存在點,使得平面與平面所成的銳二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為兩個小組,排查工作期間社區(qū)隨機抽取了100戶已排查戶,進行了對排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表.

是否滿意

組別

不滿意

滿意

合計

16

34

50

2

45

50

合計

21

79

100

1)分別估計社區(qū)居民對組、組兩個排查組的工作態(tài)度滿意的概率;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?

附表:

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),求:

(1)函數(shù)的圖象在點(0,-2)處的切線方程;

(2)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點圖;

2)求y關(guān)于x的線性回歸方程.

3)如果廣告費支出為一千萬元,預測銷售額大約為多少百萬元?

參考公式用最小二乘法求線性回歸方程系數(shù)公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人做下面的游戲:有一個由兩個同軸圓柱組成的有蓋容器,如圖,里面的實心圓柱底面半徑為,外面的圓柱面的底面半徑為,容器的高為。在容器內(nèi)放入個半徑為且質(zhì)地相同的小球,其中紅、黃、藍色各個,隨意翻動容器,然后將容器直立在桌面上。當小球全部停止后,如果有兩個顏色相同的小球相鄰,則甲勝,否則乙勝。那么,甲勝的概率為()。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機”,弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);

已知第4組市民中有3名男性,組織方要從第4組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構(gòu)成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體,從學生群體中隨機抽取了50名學生進行調(diào)查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如下表:

(I)從所調(diào)查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;

(III)將頻率視為概率,現(xiàn)從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作,求事件“”的概率.

查看答案和解析>>

同步練習冊答案