【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是( )
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }
【答案】D
【解析】解:設(shè)平面AD1E與直線BC交于點(diǎn)G,連接AG、EG,則G為BC的中點(diǎn)
分別取B1B、B1C1的中點(diǎn)M、N,連接AM、MN、AN,
則∵A1M∥D1E,A1M平面D1AE,D1E平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN內(nèi)的相交直線
∴平面A1MN∥平面D1AE,
由此結(jié)合A1F∥平面D1AE,可得直線A1F平面A1MN,即點(diǎn)F是線段MN上上的動(dòng)點(diǎn).
設(shè)直線A1F與平面BCC1B1所成角為θ
運(yùn)動(dòng)點(diǎn)F并加以觀察,可得
當(dāng)F與M(或N)重合時(shí),A1F與平面BCC1B1所成角等于∠A1MB1,此時(shí)所成角θ達(dá)到最小值,滿足tanθ= =2;
當(dāng)F與MN中點(diǎn)重合時(shí),A1F與平面BCC1B1所成角達(dá)到最大值,滿足tanθ= =2
∴A1F與平面BCC1B1所成角的正切取值范圍為[2,2 ]
故選:D
【考點(diǎn)精析】掌握空間角的異面直線所成的角是解答本題的根本,需要知道已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連續(xù)拋擲兩次骰子,得到的點(diǎn)數(shù)分別為m,n,記向量 =(m,n), =(1,﹣1)的夾角為θ,則θ∈(0, )的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點(diǎn)A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四棱錐V﹣ABCD中,底面ABCD是邊長(zhǎng)2為的正方形,其他四個(gè)側(cè)面都是側(cè)棱長(zhǎng)為 的等腰三角形.
(1)求正四棱錐V﹣ABCD的體積.
(2)求二面角V﹣BC﹣A的平面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數(shù)列. (Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點(diǎn)P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA|=|PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為正數(shù)的等差數(shù)列,a1a2=3,a2a3=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(an+1)2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com