【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點A到平面BDE的距離.
【答案】
(1)證明:∵正方形ABCD中,AB∥CD,
AB平面CDE,CD平面CDE,
∴AB∥平面CDE
(2)證明:∵AE⊥平面CDE,CD平面CDE,DE平面CDE,
∴AE⊥CD,DE⊥AE,
在正方形ABCD中,CD⊥AD,
∵AD∩AE=A,∴CD⊥平面ADE.
∵DE平面ADE,∴CD⊥DE,
∵AB∥CD,∴DE⊥AB,
∵AB∩AE=E,∴DE⊥平面ABE
(3)解:∵AB⊥AD,AB⊥DE,AD∩DE=D,
∴AB⊥平面ADE,
∴三棱錐B﹣ADE的體積VB﹣ADE= = = ,
= = ,
設點A到平面BDE的距離為d,
∵VA﹣BDE=VB﹣ADE,∴ = ,解得d= ,
∴點A到平面BDE的距離為 .
【解析】(1)推導出AB∥CD,由此能證明AB∥平面CDE.(2)推導出AE⊥CD,DE⊥AE,從而CD⊥DE,再由DE⊥AB,能證明DE⊥平面ABE.(3)由AB⊥平面ADE,能求出三棱錐B﹣ADE的體積.再由VA﹣BDE=VB﹣ADE,能求出點A到平面BDE的距離.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的判定的理解,了解一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想.
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)═log2( +a).
(1)若f(1)<2,求實數a的取值范圍;
(2)設函數g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],討論函數g(x)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}滿足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求證:
(1)數列{an+2n}是等比數列;
(2)求數列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域為R,如果存在函數g(x),使得f(x)≥g(x)對于一切實數x都成立,那么稱g(x)為函數f(x)的一個承托函數.已知函數f(x)=ax2+bx+c的圖象經過點(﹣1,0).
(1)若a=1,b=2.寫出函數f(x)的一個承托函數(結論不要求證明);
(2)判斷是否存在常數a,b,c,使得y=x為函數f(x)的一個承托函數,且f(x)為函數 的一個承托函數?若存在,求出a,b,c的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側面BCC1B1內的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構成的集合是( )
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C: + =1(a>b>0)的右焦點為F,右頂點、上頂點分別為點A、B,且|AB|= |BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若斜率為2的直線l過點(0,2),且l交橢圓C于P、Q兩點,OP⊥OQ.求直線l的方程及橢圓C的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com