【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標平面內滿足|PA|=|PB|的點P的方程;
(2)求在直角坐標平面內一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標.
【答案】
(1)解:∵A(4,﹣3),B(2,﹣1),
∴線段AB的中點M的坐標為(3,﹣2),又kAB=﹣1,
∴線段AB的垂直平分線方程為y+2=x﹣3,
即點P的方程x﹣y﹣5=0.
(2)解:設點P的坐標為(a,b),
∵點P(a,b)在上述直線上,∴a﹣b﹣5=0.①
又點P(a,b)到直線l:4x+3y﹣2=0的距離為2,
∴ =2,即4a+3b﹣2=±10,②
聯(lián)立①②可得 或
∴所求點P的坐標為(1,﹣4)或 .
【解析】(1)A(4,﹣3),B(2,﹣1),可得線段AB的中點M的坐標為(3,﹣2),又kAB=﹣1,即可得出線段AB的垂直平分線方程.(2)設點P的坐標為(a,b),由于點P(a,b)在上述直線上,可得a﹣b﹣5=0.又點P(a,b)到直線l:4x+3y﹣2=0的距離為2,可得 =2,聯(lián)立解出即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖像與直線沒有交點,求的取值范圍;
(3)若函數(shù),是否存在實數(shù)使得最小值為0,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產一種儀器的元件,由于受生產能力和技術水平等因素的限制,會產生一些次品,根據經驗知道,次品數(shù)P(萬件)與日產量x(萬件)之間滿足關系: 已知每生產l萬件合格的元件可以盈利2萬元,但每生產l萬件次品將虧損1萬元.(利潤=盈利一虧損)
(1)試將該工廠每天生產這種元件所獲得的利潤T(萬元)表示為日產量x(萬件)的函數(shù);
(2)當工廠將這種儀器的元件的日產量x定為多少時獲得的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式組 表示的平面區(qū)域為D,則
(1)z=x2+y2的最小值為 .
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+3,g(x)=m(x﹣1)+2(m>0),若存在x1∈[0,3],使得對任意的x2∈[0,3],都有f(x1)=g(x2),則實數(shù)m的取值范圍是( )
A.
B.(0,3]
C.
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據,如下表所示.
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結算時間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結算,且各顧客的結算相互獨立,求該顧客結算前的等候時間不超過2.5分鐘的概率.
(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對一批產品的長度(單位:mm)進行抽樣檢測,下圖為檢測結果的頻率分布直方圖.根據標準,產品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產品中隨機抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場柜臺銷售某種產品,每件產品的成本為10元,并且每件產品需向該商場交a元(3≤a≤7)的管理費,預計當每件產品的售價為x元(20≤x≤25)時,一天的銷售量為(x﹣30)2件. (Ⅰ)求該柜臺一天的利潤f(x)(元)與每件產品的售價x的函數(shù)關系式;
(Ⅱ)當每件產品的售價為多少元時,該柜臺一天的利潤f(x)最大,并求出f(x)的最大值g(a).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com