【題目】某同學回答用數(shù)學歸納法的證明nN*的過程如下:

證明:①當n1時,顯然命題是正確的.②假設當nkk≥1kN*)時,有,那么當nk+1時,,所以當nk+1時命題是正確的,由①②可知對于nN*,命題都是正確的,以上證法是錯誤的,錯誤在于(  )

A.kk+1的推理過程沒有使用歸納假設

B.假設的寫法不正確

C.kk+1的推理不嚴密

D.n1時,驗證過程不具體

【答案】A

【解析】

利用數(shù)學歸納法的證明步驟進行逐項判斷可知,此證明中,從推出成立中,沒有用到假設成立的形式,不是數(shù)學歸納法.

用數(shù)學歸納法應這樣證明:

①當n1時,顯然命題是正確的;

②假設當nkk≥2,kN*)時,有,即k2+k<(k+12

則當nk+1時,

所以當nk+1時命題是正確的,

由①②可知對于nN*,命題都是正確的.

原題目中的證法是錯誤的,錯誤在于從kk+1的推理過程沒有使用歸納假設;

只是用了放縮法和不等式的性質,不符合數(shù)學歸納法的要求.

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求的最大值;

2)如果函數(shù)在公共定義域D上,滿足,那么就稱伴隨函數(shù)”.已知函數(shù),.若在區(qū)間上,函數(shù)伴隨函數(shù),求實數(shù)的取值范圍;

3)若,正實數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)是否存在正實數(shù),使得對任意,都有,若存在,求出實數(shù)的取值范圍;若不存在,請說明理由;

(Ⅲ)當時, ,對恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知點D是AB上一點,滿足,點E是邊CB上一點,滿足

①當λ=時,求;

②是否存在非零實數(shù)λ,使得?若存在,求出的λ值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學名著《算學啟蒙》中有關于“松竹并生”的問題:松長四尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖,是源于其思想的一個程序框圖.若輸入的分別為8、2,則輸出的( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下有關命題的說法錯誤的是(

A.命題,則的逆否命題為,則

B.成立的必要不充分條件

C.對于命題,使得,則,均有

D.為真命題,則至少有一個為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)存在兩個極值點且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1若展開式中第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項

的系數(shù);

2若展開式前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】5個男生和3個女生,從中選出5人擔任5門不同學科的科代表,求分別符合下列條件的選法數(shù).

1)某女生一定擔任語文科代表;

2)某男生必須包括在內(nèi),但不擔任語文科代表;

3)某女生一定要擔任語文科代表,某男生必須擔任科代表,但不擔任數(shù)學科代表.

查看答案和解析>>

同步練習冊答案