【題目】下列命題中是錯(cuò)誤命題的個(gè)數(shù)有( )
(1)若命題p為假命題,命題為假命題,則命題“”為假命題;
(2)命題“若,則或”的否命題為“若,則或”;
(3)對(duì)立事件一定是互斥事件;
(4)為兩個(gè)事件,則P(A∪B)=P(A)+P(B);
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
(1)易知p假q真,利用復(fù)合命題間的關(guān)系即可知(1)的正誤;
(2)寫(xiě)出命題“若xy=0,則x=0或y=0”的否命題,再判斷(2)的正誤即可;
(3)對(duì)立事件一定是互斥事件,互斥事件不一定是對(duì)立事件;
(4)A、B為兩個(gè)互斥事件,則P(A∪B)=P(A)+P(B)
(1)若命題p為假命題,命題¬q為假命題,則p假q真,故p∨q真,故(1)錯(cuò)誤;
(2)命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0且y≠0”,故(2)錯(cuò)誤;
(3)對(duì)立事件一定是互斥事件,互斥事件不一定是對(duì)立事件,故(3)正確;
(4)A、B為兩個(gè)互斥事件,則P(A∪B)=P(A)+P(B),故(4)不正確;
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某學(xué)校進(jìn)行的一次語(yǔ)文與歷史成績(jī)中,隨機(jī)抽取了25位考生的成績(jī)進(jìn)行分析,25位考生的語(yǔ)文成績(jī)已經(jīng)統(tǒng)計(jì)在莖葉圖中,歷史成績(jī)?nèi)缦拢?/span>
(Ⅰ)請(qǐng)根據(jù)數(shù)據(jù)在莖葉圖中完成歷史成績(jī)統(tǒng)計(jì);
(Ⅱ)請(qǐng)根據(jù)數(shù)據(jù)完成語(yǔ)文成績(jī)的頻數(shù)分布表及語(yǔ)文成績(jī)的頻率分布直方圖;
語(yǔ)文成績(jī)的頻數(shù)分布表:
語(yǔ)文成績(jī)分組 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x0∈[0,2],log2(x+2)<2m;命題q:關(guān)于x的方程3x2﹣2x+m2=0有兩個(gè)相異實(shí)數(shù)根.
(1)若(¬p)∧q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)體積為12 的正三棱柱的三視圖如圖所示,則這個(gè)三棱柱的側(cè)視圖的面積為( )
A.6
B.8
C.8
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)F1 , F2和上下兩個(gè)頂點(diǎn)B1 , B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2 , 斜率為k(k≠0)的直線與橢圓C相交于E,F(xiàn)兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.求證:kk′為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=lncos(2x+ )的一個(gè)單調(diào)遞減區(qū)間是( )
A.(﹣ ,﹣ )
B.(﹣ ,﹣ )
C.(﹣ , )
D.(﹣ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ 有兩個(gè)零點(diǎn)x1、x2 .
(1)求k的取值范圍;
(2)求證:x1+x2> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線l的極坐標(biāo)方程為.
分別求圓的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
設(shè)直線交曲線于兩點(diǎn),曲線于兩點(diǎn),求的長(zhǎng);
為曲線上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com