【題目】一個體積為12 的正三棱柱的三視圖如圖所示,則這個三棱柱的側(cè)視圖的面積為( )
A.6
B.8
C.8
D.12
【答案】A
【解析】解:設(shè)棱柱的高為h,
由左視圖知,底面正三角形的高是2 ,由正三角形的性質(zhì)知,其邊長是4,
故底面三角形的面積是 =4
由于其體積為12 ,故有h×4 =12 ,得h=3
由三視圖的定義知,側(cè)視圖的寬即此三棱柱的高,故側(cè)視圖的寬是3,其面積為3×2 =6
故選A
此幾何體是一個正三棱柱,正視圖即內(nèi)側(cè)面,底面正三角形的高是2 ,由正三角形的性質(zhì)可以求出其邊長,由于本題中體積已知,故可設(shè)出棱柱的高,利用體積公式建立起關(guān)于高的方程求高,再由正方形的面積公式求側(cè)視圖的面積即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的離心率為 ,其長軸長與短軸長的和等于6.
(1)求橢圓E的方程;
(2)如圖,設(shè)橢圓E的上、下頂點分別為A1、A2 , P是橢圓上異于A1、A2的任意一點,直線PA1、PA2分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,有下面結(jié)論:
①AC∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是;
④AD1與BD為異面直線.其中正確的結(jié)論的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是錯誤命題的個數(shù)有( )
(1)若命題p為假命題,命題為假命題,則命題“”為假命題;
(2)命題“若,則或”的否命題為“若,則或”;
(3)對立事件一定是互斥事件;
(4)為兩個事件,則P(A∪B)=P(A)+P(B);
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:及點,.
過B作直線l與圓C相交于M,N兩點,,求直線l的方程;
在圓C上是否存在點P,使得?若存在,求點P的個數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實數(shù)m的取值范圍;
(2)若是 成立的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com