【題目】在某學(xué)校進(jìn)行的一次語文與歷史成績中,隨機(jī)抽取了25位考生的成績進(jìn)行分析,25位考生的語文成績已經(jīng)統(tǒng)計在莖葉圖中,歷史成績?nèi)缦拢?/span>
(Ⅰ)請根據(jù)數(shù)據(jù)在莖葉圖中完成歷史成績統(tǒng)計;
(Ⅱ)請根據(jù)數(shù)據(jù)完成語文成績的頻數(shù)分布表及語文成績的頻率分布直方圖;
語文成績的頻數(shù)分布表:
語文成績分組 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
【答案】解:(Ⅰ)根據(jù)題意,在莖葉圖中完成歷史成績統(tǒng)計,如圖所示;
(Ⅱ)根據(jù)數(shù)據(jù)完成語文成績的頻數(shù)分布表,如下;
語文成績分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) | [100,110) | [110,120] |
頻數(shù) | 1 | 2 | 3 | 7 | 6 | 5 | 1 |
填寫語文成績的頻率分布直方圖,如圖所示:
【解析】(Ⅰ)根據(jù)題意,在莖葉圖中完成歷史成績統(tǒng)計即可;
(Ⅱ)根據(jù)數(shù)據(jù)完成語文成績的頻數(shù)分布表,填寫語文成績的頻率分布直方圖
【考點(diǎn)精析】掌握頻率分布表和頻率分布直方圖是解答本題的根本,需要知道第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表;頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銀川一中從高二年級學(xué)生中隨機(jī)抽取40名學(xué)生作為樣本,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:后得到如圖的頻率分布直方圖.
(1)求圖中實數(shù)的值;
(2)試估計我校高二年級在這次數(shù)學(xué)考試的平均分;
(3)若從樣本中數(shù)學(xué)成績在與兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n為不重合的兩條直線,,為不重合的兩個平面,則下列命題中,所有真命題的個數(shù)是______.
若,,則;若,,則;
若,,則;一定存在直線l,使得,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ax2+x﹣1)ex , 其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)若a=1.求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若a=﹣1,函數(shù)f(x)的圖象與函數(shù)g(x)=x3+x2+m的圖象有3個不同的交點(diǎn),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C以坐標(biāo)軸為對稱軸,以坐標(biāo)原點(diǎn)為對稱中心,橢圓的一個焦點(diǎn)為,點(diǎn)在橢圓上,
Ⅰ求橢圓C的方程.
Ⅱ斜率為k的直線l過點(diǎn)F且不與坐標(biāo)軸垂直,直線l交橢圓于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是錯誤命題的個數(shù)有( )
(1)若命題p為假命題,命題為假命題,則命題“”為假命題;
(2)命題“若,則或”的否命題為“若,則或”;
(3)對立事件一定是互斥事件;
(4)為兩個事件,則P(A∪B)=P(A)+P(B);
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com